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a b s t r a c t

Through a programme of experiments, numerical modelling and parametric studies, the implications of
allowing for strain-hardening in the design of laterally restrained continuous steel beams are
investigated with particular emphasis on the performance of the bracing elements. A total of six tests
were performed on continuous beams considering two basic scenarios: discrete rigid restraints and
discrete elastic restraints of varying stiffness. In the latter case, the forces developed in the restraints
were measured and compared to the design forces specified in EN 1993-1-1 (2005) for members
containing rotated plastic hinges. Two different restraint spacings were considered in the tests to give
non-dimensional lateral torsional slenderness values of 0.3 and 0.4 for the unrestrained lengths. In all
tests, bending resistances predicted by the deformation-based continuous strength method (CSM) were
exceeded. Using a standardised numerical model validated against the laboratory test data, a series of
parametric studies were conducted; it was concluded that elastic restraints for members containing
rotated plastic hinges should be designed to sustain higher forces than required for traditional plastic
design if the full CSM collapse load is to be achieved.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The resistance of statically indeterminate beams to lateral
instability can be improved through the provision of effective
lateral bracing, either continuously or at intervals along the length
of the member. For discrete bracing systems, the spacing of the
lateral restraints influences the bending resistance of the member.
In order to be effective, the restraints should have adequate
stiffness to limit the lateral displacements at the point of restraint
and have sufficient strength to withstand the forces that arise as a
consequence of these displacements as well as any initial imper-
fections. It was shown by Winter [1] that, provided the restraint is
of adequate stiffness, these forces are small relative to the axial
forces in the primary member.

In the traditional plastic design of statically indeterminate
structures, the final collapse mechanism develops through the
sequential formation of plastic hinges. In order for subsequent
hinges to form, the preceding plastic hinges are required to rotate.
Once the hinge has formed, there is a reduction in stiffness and no
further spread of yield. At these rotating plastic hinges, additional
demands will be placed upon the restraints compared with stati-
cally determinate structures, which will not contain rotating plastic

hinges. Provisions in EN 1993-1-1 reflect this increased demand and
minimum restraint force resistances have been stipulated for the
case of traditional plastic design. However, this provision is yet to be
verified for a newly proposed, deformation-based design procedure,
referred to herein as the continuous strength method (CSM), where
moments beyond the full plastic capacity can be achieved through
allowing for strain-hardening [2].

Numerous studies of lateral restraint requirements have been
carried out [3–14], typically considering elastic member behaviour.
The present research is devoted to examining the lateral stability
implications of allowing for plasticity and strain-hardening in the
design of the primary members. To this end, a series of experi-
ments on continuous beams with variations in restraint spacing
and stiffness were conducted. Using a geometrically and materially
non-linear finite element model, the test data were reproduced
and extended in a parametric study which was then used to
inform and develop some basic design recommendations.

2. Key design aspects

2.1. Lateral restraint spacing

EN 1993-1-1 (2005) defines a non-dimensional slenderness
limit, or plateau length, λLT ¼ 0:4, below which, the effects of
lateral torsional buckling can be ignored and the design buckling
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resistance moment of the member Mb;Rd may be taken as the
design bending resistance Mc;Rd of the cross-section, assuming
γM0 ¼ γM1. λLT is defined as

λLT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Wyf y
Mcr

s
ð1Þ

in which Wy is the major axis plastic section modulus for Class 1 and
2 cross-sections, the elastic section modulus for Class 3 cross-sections
and an effective section modulus for Class 4 cross-sections, f y is the
material yield strength andMcr is the elastic critical moment for lateral
torsional buckling, which is a function of member length L. For a given
set of cross-section and material properties and a fixed value of λLT,
Eq. (1) can be solved for L to define the maximum allowable spacing
between fully effective lateral restraints before reductions in resistance
for lateral torsional buckling are required. For members containing
plastic hinges, stable lengths below which lateral torsional buckling
can be ignored are given in Annex BB-1 of EN-1993-1-1 (2005).

2.2. Restraint forces

Lateral restraints must be of sufficient stiffness to restrict
lateral buckling deformations at the point of restraint, whilst also
being of sufficient strength to resist the forces generated as a result
of the restraining action. In the elastic range, it can be shown that,
for a perfect system, there is a threshold level of brace stiffness
that causes a beam to buckle into the second mode (i.e. between
the brace points rather than in an overall mode) – see Fig. 1 [3].

For a beam of length L experiencing a force NEd in the compression
flange, EN 1993-1-1 states that the restraint system should be capable
of resisting an equivalent stabilising force per unit length qd:

qd ¼∑NEd
8e0þδq

L2
ð2Þ

where the assumed initial imperfection amplitude of the restrained
member, e0, is defined as

e0 ¼ αmL=500 ð3Þ

in which αm is reduction factor used for restraining multiple
members and δq is the lateral deflection of the restrained member
into the restraints. Assuming an infinitely stiff restraint system,
δq ¼ 0, and Eq. (2) implies that a restraint must resist 1.6% of NEd.
Eq. (2) is derived on the basis of elastic behaviour, but may also be
applied when plasticity occurs in the restrained member, allowing
for moments up to the full plastic bending capacity, Mpl, but not
covering the demands of rotating plastic hinges. For non-rotating
plastic hinges atMcsm, it has been previously established in [15] that
no modifications are necessary to the current provisions of EN
1993-1-1. The additional deformation demands at rotating plastic
hinges will place additional demands upon the bracing system. For

members that do contain rotated plastic hinges, the additional
requirements in EN 1993-1-1 are as follows:

(i) At each plastic hinge location, the cross-section should have an
effective lateral and torsional restraint, provided at both the
tension and compression flanges.

(ii) The braces at the compression flange should be designed to
resist a local force of at least 2.5% of NEd, where NEd ¼MEd=h is
the force in the compression flange, MEd is the moment in the
beam at the plastic hinge location and h is the overall depth of
the beam.

2.3. The continuous strength method (CSM)

The continuous strength method is a deformation-based design
approach for steel elements that allows for the beneficial influence
of strain-hardening. To date, design equations for the CSM have
been developed for cross-section resistance in bending and
compression [16]. The CSM bending resistance function Mcsm;Rd,
which applies for λpr0:68 is defined as

Mcsm;Rd ¼
Wplf y
γM0

1þEsh
E

Wel

Wpl

ϵcsm
ϵy

�1
� �

� 1�Wel

Wpl

� �
ϵcsm
ϵy

� ��2
 !

ð4Þ
where E is the modulus of elasticity, Esh is the strain-hardening
slope taken equal to E=100 for structural steel, Wel and Wpl are the
elastic and plastic section moduli and ϵcsm=ϵy is the strain ratio,
defining the limiting strain in the cross-section as a multiple of the
yield strain ϵy, and given by the following equation:

ϵcsm
ϵy

¼ 0:25

λ
3:6
p

but r15 ð5Þ

in which λp is the local cross-section slenderness, given by the
following equation:

λp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f y=σcr

� �r
ð6Þ

with σcr being the elastic buckling stress of the cross-section, or
conservatively its most slender constituent plate element.

A key assumption of traditional plastic design is rigid-plastic
behaviour, whereby upon attaining the plastic moment capacity no
further increases in capacity occur with deformation and infinite
rotations can be achieved. Introducing strain-hardening precludes
the notion that plastic hinges may rotate at a constant moment, and
with stocky sections (low λp values) significant increases in capacity
beyond Mpl are possible [16]. Notwithstanding, the basic features of
traditional plastic design (equilibrium, mechanism and yield) can be
combined with the CSM by modifying the CSM moment capacity
predictions at individual plastic hinge locations based upon relative
deformation demands [17,16]. The procedure can be summarised in
the following steps:

(i) Identify the locations of the plastic hinges and where neces-
sary determine the critical collapse mechanism.

(ii) Using the theorem of virtual work, evaluate the rotations θi at
each plastic hinge location i.

(iii) Based upon cross-section slenderness λp, determine the
deformation capacity ϵcsm=ϵy using Eq. (5).

(iv) For each plastic hinge, evaluate the ratio of deformation
demand to deformation capacity, αi, by using the following
equation:

αi ¼
θi

ϵcsm
ϵy

� �
i

ð7Þ
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Fig. 1. Typical theoretical relationship between buckling load enhancement and
restraint stiffness for a beam.
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