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a b s t r a c t

Thin-walled sections under localised loading may lead to web crippling of the sections. This paper
develops the Semi-Analytical Finite Strip Method (SAFSM) for thin-walled sections subject to localised
loading to investigate web crippling phenomena. The method is benchmarked against analytical
solutions, Finite Element Method (FEM) solutions, as well as Spline Finite Strip Method (SFSM) solutions.
The paper summarises the SAFSM theory then applies it to the buckling of plates, and channel sections
under localised loading. Multiple series terms in the longitudinal direction are used to compute the pre-
buckling stresses in the plates and sections, and to perform the buckling analyses using these stresses.
Solution convergence with increasing numbers of series terms is provided in the paper. The more
localised the loading and buckling mode, the more series terms are required for accurate solutions. The
loading cases of Interior One Flange (IOF) and Interior Two Flange (ITF) are investigated in this paper
using simply supported boundary conditions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled sections and plates under localised loading leading to
plate buckling have been studied analytically for a long period mainly
as part of investigations of web plates of sections at points of
concentrated load. Two of the most comprehensive summaries of
the work to date have been by Khan and Walker [1] where the
buckling of plates subject to localised loading was investigated and
Johansson and Lagerqwist [2] where the resistance of plate edges to
localised loading is summarised. More recently, Natario et al. [3] have
further developed these investigations for beams subjected to con-
centrated loads using Generalised Beam Theory (GBT). They bench-
mark GBT for plates, un-lipped channels and I-sections against the
earlier research and the Shell Finite Element method (SFE). To date, the
Finite Strip Method (FSM) of analysis developed by Cheung [4] does
not appear to have been used for buckling studies under localised
loading. As the FSM is used extensively in the Direct Strength Method
(DSM) of design of cold-formed sections in the North American
Specification NAS S100 [5] and the Australian/New Zealand Standard
AS/NZS 4600 [6] it is important that the FSM of buckling analysis is
extended to localised loading. This paper further develops the Semi-
Analytical Finite Strip Method (SAFSM) for thin-walled sections subject

to localised loading and benchmarks it against the Spline Finite Strip
Method (SFSM) used previously by Pham and Hancock [7,8] for shear
buckling problems and the Finite Element Method programme-
ABAQUS/Standard (2008) version 6.8-2 [9].

Folded plate and finite strip theories for the buckling analysis of
thin-walled sections and stiffened panels in longitudinal and trans-
verse compression and shear have been developed since the mid-
1960s. Two basic approaches were adopted. These are the exact
solutions of Wittrick [10], and Williams and Wittrick [11], and the
approximate solutions of Przemieniecki [12] and Plank and Wittrick
[13] based on the finite strip method of analysis developed by Cheung
[4]. Most of this research was applied to aeronautical structures where
the longitudinal and transverse compression as well as shear is
assumed constant as in the stiffened panels of aeroplane wings.
Recently, Chu et al. [14] and Bui [15] have applied the SAFSM to the
buckling of thin-walled sections under more general loading condi-
tions so that multiple series terms are used to capture the modulation
of the buckles that occur. These latter papers are restricted to bending
of the sections and transverse compression and shear are not included.
The application of the SAFSM to uniform shear of thin-walled sections
has recently been applied by Hancock and Pham [16] where multiple
series terms in the longitudinal direction are used to perform the
buckling analyses. In the present paper, the method in Hancock
and Pham [16] is extended to include the potential energy resulting
from varying longitudinal, transverse and shear stresses. Multiple
series terms in the longitudinal direction are used to compute the
pre-buckling stresses in the plates and sections, and to perform the
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buckling analyses using these stresses. Solution convergence with
increasing numbers of series terms is provided. The more localised the
loading and hence buckling mode then the more series terms are
required for accurate solutions especially for longer sections with
concentrated loads.

2. Finite strip pre-buckling and buckling analyses

The finite strip method developed by Cheung [4] is similar to the
finite element method in that approximate displacement functions are
used to represent the plate flexural and membrane deformations. The
theorem of minimum total potential energy is applied to compute the
resulting stiffness equations. The SAFSM allows the deformations and
stresses to be computed for any folded plate system satisfying the
boundary conditions assumed. Normally, the sections are assumed
simply supported at the ends so that the harmonic functions in the
longitudinal direction are orthogonal thus allowing the different series
terms to be uncoupled in the linear stiffness analysis. This produces
considerable computational advantages for the SAFSM compared with
the FEM. Longitudinal functions for other boundary conditions can be
chosen which are also orthogonal as given by Cheung [4]. The
resulting stiffness equations are summarised by

K½ � δ� �¼ Wf g ð1Þ

where [K] is the system stiffness matrix based on a strip subdivision of
a thin-walled section as shown in Fig. 1, {δ} are the nodal line
displacements of the strips in the global X,Y,Z axes, and {W} is the
load vector based on the constant nodal line loads FX, FY and FZ acting
over a portion of the length as shown in Fig. 1. [K] is based on the
strain energy of the strip elements, and {W} is based on the potential
energy of the line loads. Its components are given in Appendix A4.

Eq. (1) can be solved for the nodal line displacements {δ} in the
global X,Y,Z axes, and the flexural and membrane stresses {σ} in
the strips. These are pre-buckling displacements and stresses and
are also described by harmonic functions.

Based on the pre-buckling membrane stresses {σ}, the stability
equations given by Eq. (2) can be derived from the minimum total
potential of the system undergoing buckling deformations. Since the
buckling deformations also satisfy the simply supported boundary
conditions, the same displacement functions are used for the buckling
deformations as for the pre-buckling deformations.

K½ �� λ G½ �� �
δ
� �¼ 0 ð2Þ

where [G] is the system stability matrix and λ is the load factor against
buckling. The paper concentrates the development of the stability

matrix [G] for strips under generalised membrane stresses resulting
from line loading as shown in Fig. 1. The formulation of the stiffness
matrix [K] was given previously in detail in Cheung [4] and so its
detailed derivation is not given in this paper since it is identical to
Cheung [4]. All pre-buckling results in this paper are the same as
would be derived using Cheung [4]. However, the flexural and
membrane components of the stiffness matrix are given in
Appendices A1 and A2 respectively for completeness and consistence
of notation.

3. Plate deformations

The plate flexural deformations (w) of a strip can be described
by the summation over μ series terms as follows:

w¼ ∑
μ

m ¼ 1
f 1m yð ÞX1m xð Þ ð3Þ

where the x-axis is in the longitudinal direction in the plane of the
strip, the y-axis is in the transverse direction in the plane of the
strip, and w is in the z-direction perpendicular to the strip as
shown in Fig. 2.

The function f1m(y) for the mth series term is the transverse
variation given by

f 1m yð Þ ¼ α1Fmþα2Fm
y
b

� �
þα3Fm

y
b

� �2
þα4Fm

y
b

� �3
ð4Þ

where the 4 polynomial coefficients αiFm for the mth series term
depend on the nodal line deformations of the strip. The term b is
the width of the strip.

The function X1m(x) is the longitudinal variation of the mth
series term and is given by

X1m xð Þ ¼ sin
mπx
L

� �
ð5Þ

where L is the length of the strip. The function X1m(x) satisfies the
simply supported boundary conditions assumed in this paper. It is
a useful function to analyse the IOF and ITF loading cases given in
Refs. [5,6]. Other boundary conditions can be used in the SAFSM as
set out in Cheung [4] for cases such as EOF and ETF in Refs. [5,6]
but are not considered in this paper. They will be investigated in
future papers.

The plate membrane deformations (u,v) in the (x,y) directions
respectively can be described by the summation over μ series
terms as

v¼ ∑
μ

m ¼ 1
f vm yð ÞX1m xð Þ ð6Þ

u¼ ∑
μ

m ¼ 1
f um yð ÞX0

1m xð Þ L
mπ

ð7Þ

Fig. 1. Line loads on channel section showing global axes X,Y,Z. Fig. 2. Strip local axes X,Y,Z and nodal line deformations for the mth series term.
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