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a b s t r a c t

A semi-analytical model for the non-linear analysis of simply supported, unstiffened laminated
composite cylinders and cones using the Ritz method and the Classical Laminated Plate Theory is
proposed. A matrix notation is used to formulate the problem using Donnell's and Sanders' non-linear
equations. The approximation functions proposed are capable to simulate the elephant's foot effect, a
common phenomenon and a common failure mode for cylindrical and conical structures under axial
compression. Axial, torsion and pressure loads can be applied individually or combined, and solutions for
linear static, linear buckling and non-linear buckling analyses are presented and verified using a
commercial finite element software. The presented non-linear buckling analyses used perturbation loads
to create the initial geometric imperfections, showing the capability of the method for arbitrary
imperfection patterns. The linear stiffness matrices are integrated analytically and for the conical
structures an approximation is proposed to overcome the non-integrable expressions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The structural behavior of cylindrical structures has been a topic for
research in the past 120 years. Southwell [1] is one of the pioneering
authors presenting equations for the buckling of thin-walled isotropic
cylinders, already recognizing that his theory could not be applied in
real cases where geometric imperfections and load asymmetries took
place based on the observed discrepancies between theory and test
results. The first developments of non-linear buckling equations
focused on isotropic materials and the increasing application of
composite structures, especially for aerospace and space structures,
motivated the development of theories for orthotropic materials.
Tennyson [2] presents a thorough review about the first studies with
orthotropic materials, all of them constraining the equations for
symmetric or anti-symmetric laminates [3]. Simitses et al. [3] are
among the first authors developing non-linear buckling equations for
general laminated composite cylinders.

Concerning the different non-linear approximations used for the
kinematic relations, Simitses et al. [4] presents a comparison between
the Donnell [5] and the Sanders [6] approximations for the buck-
ling of axially compressed orthotropic cylinders under axisymmetric
imperfections, and the general trend observed by the authors it that
Donnell's equations can overestimate the buckling load, especially for
thinner and longer cylinders. Goldfeld et al. [7] extended the study of
Simitses et al. [4] to isotropic conical shells and included the terms
required for the Timoshenko and Gere's kinematic approximation [8],
concluding that Sanders' approximation already gives an accuracy
comparable to Timoshenko and Gere's approximation, and supporting
the observation that the more accurate non-linear equations results in
a lower buckling load predictions. In 2007, Goldfeld [9] used a model
with variable thickness for laminated composite cones and verified
that the imperfection sensitivity is not reduced for awider semi-vertex
angle and observed that the most accurate non-linear equations result
in lower buckling loads and less imperfection sensitivity.

In the approaches of Simitses et al. [3,4] and of Goldfeld et al. [7,9]
only symmetric and axisymmetric imperfection patterns can be used,
and more general imperfection patterns cannot be used, such as those
obtained using perturbation loads or geometric imperfections from
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advanced data acquisition systems [10]. Such general imperfection
patterns are not necessarily symmetric and can only be represented by
appropriate Fourier series such as the half-cosine function proposed by
Arbocz [11].

Geier and Singh [12] are among the first authors to present the
linear buckling formulations for laminated composite cylinders
and panels, developing equations for thin and moderately thick
shells, where the thick shell formulation is similar to Sanders'
approximation herein adopted. The authors assumed an ortho-
tropic laminate where the terms A16; A26; B16; B26; D16; D26 and
the corresponding symmetric counterparts in the laminate con-
stitutive matrix are set to zero. This assumption is required in
order to allow the derivation of analytical solutions for the linear
buckling problem, but as a side effect any shear–tension, torsion–
tension and torsion–bending coupling is ignored, resulting in
buckling modes which resemble those of isotropic structures, i.e.
without a torsion-like pattern. More recently Shadmehri [13]
proposed a semi-analytical approach for the linear buckling of
laminated composite cones where the approximation functions
also do not allow the referred torsion-like patterns since it does
not contain a complete Fourier series for the circumferential
coordinate, resulting always in a null normal displacement
(w¼ 0) at θ¼ 0 and θ¼ π (cf. Fig. 1).

The present study proposes a semi-analytical model based on the
Ritz method with the aim to fill a literature gap for unstiffened
cylindrical and conical shells, developing a formulation that is capable
to predict the linear and non-linear behavior of these structures under
any arbitrary configuration of geometric imperfections. This paper
focus on imperfections created using a single perturbation load, which
are relevant for the Single Perturbation Load Approach (SPLA),
proposed by Hühne and collaborators [14–16], which consists of
new design approach for less conservative estimations of knock-
down factors commonly applied in space structures. Such imperfec-
tion pattern has shown to produce less conservative knock-downs
than axisymmetric or linear buckling mode-shaped imperfection
patterns [17].

Besides the perturbation loads, axial compression, torsion and
internal pressure are covered in the formulation herein developed.
The shells are modeled using the Classical Laminated Plate Theory
(CLPT), where a zero transverse shear state is assumed [18]. Donnell's
and Sanders' equations are compared in order to evaluate whether the
increased accuracy obtained using Sanders' justifies the higher com-
putational cost associated. The non-linear formulation is derived in
matrix form making it straightforward to construct the systems of
equations fromwhich the linear and non-linear static problems can be
formulated. The matrices defined in the non-linear formulation are
directly applied to obtain the non-linear eigenvalue problem using the

neutral equilibrium criterion, which is then specialized to the linear
case in order to obtain the linear buckling equations.

In the context of linear and non-linear static analyses the proposed
approximation functions can capture the so called “elephant's foot”
effect, which consists of a high variation of the normal displacements
close to the edges due to a non-uniform increase of the cone/cylinder
radius during axial compression. The elephant's foot may cause a
failure mode that governs the design of many practical structures [19],
and has also been observed in the finite element models used to
predict the non-linear buckling load of laminated composite cylinders
[17,20].

2. Formulation of the different analysis types

In this section a set of non-linear equations for the static analysis of
a conical/cylindrical shell is obtained using the Ritz method. The
quantities described in all equations are expressed in terms of the
initial, undeformed state (analogous to total Lagrangian formulation
used in finite elements [21]). In Fig. 1 the adopted coordinate system
and the variables defining the geometry and the displacement field
are shown. The applied loads are defined by an axially compressive
force FC , a torsion load T, a pressure load P and perturbation loads FPLi .
Note that the perturbation loads are applied normally to the shell
surface. When only one perturbation load is applied, it will be called a
single perturbation load (SPL). The cone becomes a cylinder when the
semi-vertex angle α is set to zero. The radius r xð Þ will be simply
referred to as r for the sake of brevity and is calculated using Eq. (1).

r xð Þ ¼ r¼ R2þx sin α ð1Þ

Defining the total potential energy of the system of Fig. 1 as Π, the
strain energy (internal energy) as U and the energy due to the external
forces (external energy) as V, the equilibrium can be stated by the
stationary condition [18,22]

δΠ ¼ δUþδV ¼ 0 ð2Þ

where

δU ¼
Z
V
σf gT δε
� �

dV ð3Þ

and:

δV ¼ � Fextf gT δc
� � ð4Þ

with Fextf g calculated as detailed in Section 3. Using the Equivalent
Single-Layer (ESL) kinematic assumptions [18] the integration of
Eq. (3) can be approximated by an integration over the shell surface

δU ¼
Z
V
σf gT δε
� �

dV ¼∭xθzfσg σf gT δε
� �

rdθdx

¼∬
xθ

Nf gT δε
� �

rdθdx ð5Þ

where Nf g is the vector of the distributed forces and moments acting
on the shell which in the current study correlates to the strain vector
using the Classical Laminated Plate Theory (CLPT) [18]. The compo-
nents of the strain and distributed force vectors for the CLPT are

εf gT ¼ ε 0ð Þ
xx ε 0ð Þ

θθ γ 0ð Þ
xθ ε 1ð Þ

xx ε 1ð Þ
θθ γ 1ð Þ

xθ

n o

Nf gT ¼ Nxx Nθθ Nxθ Mxx Mθθ Mxθ

n o
: ð6Þ

The material constitutive relations are assumed to be linear,
being represented as

Nf g ¼ F½ � εf g: ð7ÞFig. 1. Cone/cylinder coordinate system and geometric variables.
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