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a b s t r a c t

A novel methodology for imperfection sensitivity analysis is presented. Koiter's perturbation method is
used to calculate the imperfection paths emanating from mode interaction bifurcations, which occur on
the post-buckling paths of the single modes. The Monte Carlo method is used to test a large number of
modes and all possible interactions among them. The computational cost is low because of the efficiency
of Koiter's method. The demands of Koiter's method for accurate evaluations of higher order derivatives
of the potential energy are met by a mixed, corotational element.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The design of composite structures is most often dominated by
buckling [1,2]. For example, the demands for fuel efficiency are
prompting the aircraft industry to revolutionize airframe construc-
tion to save weight, and thus fuel. A promising concept is to let the
airframe operate in the postbuckling regime, where the skin of the
composite stiffened panels are allowed to buckle in normal flight
conditions. This hinges upon the assumption that stiffened panels,
and thus the entire airframe, are imperfection insensitive.

Imperfection sensitivity analysis requires the identification of a
large number of buckling modes and their interaction. Because of
the large number of possible modes and our a priori ignorance
about which one would interact with each other, such analysis is
prohibitively time consuming. Continuation methods based on Riks
scheme are often used [3]. In spite of the simplicity of its numerical
implementation, which requires only an approximation of the
tangent stiffness matrix, the method suffers in the case of multiple
bifurcations, requiring ad-hoc branch switch algorithms [4]. Con-
tinuation methods are time consuming, requiring a lengthy analysis
for each assumed imperfection. Furthermore, type and shape of
imperfections are unknown, either because the structure is in the
design stage or because it is too difficult to measure them.

Therefore, the aim of this work is to propose a robust and efficient
methodology to calculate the imperfection sensitivity of laminated
composite folded plates, including stiffened panels as a particular

case. The proposed methodology does not require a priori knowledge
of the shape and magnitude of imperfections and does not rely on
lengthy continuation analysis. Instead, it uses Koiter's perturbation
approach [5,6] to calculate the bifurcation load, post-buckling path,
and interaction between modes to detect bifurcations on the post-
buckling path of individual modes, as well as the paths emanating
from those bifurcations. The requirement for linearity of the con-
stitutive equations is easily met by composite materials, which have a
broad, linear stress and strain range of operation in compression [7].

The most recent implementations of Koiter's approach include
spatial beam assemblages [8], folded plates [9], and composite
structures [10]. Since the approach is based on fourth-order
energy expansion [8], a finite element capable of accurately
representing fourth-order terms is required for robustness of the
analysis. The corotational approach [11,12] fulfils this requirement
allowing the complete reuse of a linear element for geometrically
nonlinear analysis. A mixed formulation is used to avoid extra-
polation locking [13]. The recent 3D plate finite element [14] based
on Hellinger–Reissner variational formulation guarantees an accu-
rate evaluation of linear elastic response and of rotation fields [15],
so it is very suitable to be used with a corotational formulation to
obtain a geometrically nonlinear formulation, which is accurate up
to fourth order energy terms [10, Fig. 3b].

Koiter's method provides robust prediction of the path emanat-
ing form interaction bifurcations between three or more modes,
thus providing a good estimate of the imperfection sensitive, post-
buckling trajectory (even when the shape and magnitude of the
imperfections are unknown) that otherwise would be very
costly to follow by a continuation methods. Mode interaction
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often produces the most deleterious imperfection sensitive path
with the larger drop in load carrying capacity [16–18]. The
difficulty resides on how to select the set of modes that
produces the worst behavior.

The Monte Carlo method is proposed herein to find the modes
that yield the most unfavorable, imperfection sensitive path.
Although Monte Carlo is an expensive method, the computational
cost is keep low thanks to the efficiency of both the element used
and Koiter's approach. Also, Koiter's approach is quite demanding
about the quality of higher order (up to 4th order) derivatives of
the energy, but the element formulation used in this work is
uniquely suited to satisfy those demands for accuracy at a low
computational cost. The proposed methodology allows us to run
thousand of analysis in a few seconds, obtaining the worst
imperfection using a Monte Carlo simulation.

2. Koiter's formulation

2.1. The asymptotic analysis

Asymptotic analysis is essentially the implementation of Koi-
ter's nonlinear elastic stability approach [5] into the finite element
method (FEM) [6]. The solution process is based on an expansion
of the potential energy Φ in terms of load factor λ and modal
amplitudes ξi. It can be summarized as follows:

(i) The fundamental path is obtained as a linear extrapolation

uf ½λ� ¼ u0þλû ð1aÞ

where u0 is an initial displacement, possibly null, and u¼ λû
is the vector of kinematic parameters, i.e., the space of
degrees of freedom (dof) of the structure, and bu ¼ du=dλ is
obtained as the solution of the linear algebraic equation

K0û ¼ p̂ ð1bÞ

where p̂ is the reference load and K0 ¼K ½u0� is the stiffness
matrix, which contains the coefficients of the quadratic terms
of the energy Φ″.

(ii) A cluster of buckling loads λi, i¼ 1…m, and associated buckling
modes _v i are obtained along uf ½λ� by the critical condition

K ½λi� _v i ¼ 0; K ½λ� ¼ K ½u0 þ λ û� ð1cÞ

the eigenvalue problem is defined as fully nonlinear, to
correctly recover the post-critical behavior. The nonlinearity
is introduced by updating the configuration along the funda-
mental path.
Note that the size m of the subspace of buckling modes
needed for the analysis is orders of magnitude smaller than
the number of dof used to discretize the structure, often as
little as m¼3.
We denote by V ¼ f _v ¼ Pm

i ¼ 1 ξi _v ig the subspace spanned by
the buckling modes _v i (where ξi are the modal amplitudes)
and by W ¼ fw : w ? _v i; i¼ 1⋯mg its orthogonal comple-
ment, defined by the orthogonality condition

w ? _v i3Φ‴
bû _viw¼ 0 ð1dÞ

where û ¼Lû, _vi ¼L _v i, w¼Lw and L is the linear operator
of FEM interpolation.
We denote by λb an appropriate reference value for the
cluster, e.g., the smallest of λi or their mean value. Accord-
ingly, a suffix “b” denotes quantities evaluated in correspon-
dence to ub ¼ uf ½λb�.

(iii) Defining ξ0 ¼ ðλ�λbÞ and _v0 ¼ û, the asymptotic approxima-
tion for any equilibrium path is approximated by a expansion
in terms of mode amplitudes ξk as follows:

u½λ; ξk� ¼ ubþ
Xm
i ¼ 0

ξi _v iþ
1
2

Xm
i;j ¼ 0

ξiξjwij ð1eÞ

where wijAW are quadratic corrections introduced to satisfy
the projection of the equilibrium equation (see[19, Section 3.3])
into W, obtained by the linear orthogonal equations

δwT ðKbwijþpijÞ ¼ 0; 8wAW ð1fÞ
where Kb ¼K ½uf ½λb�� and vectors pij are defined as a function of
modes _v i; i¼ 0…m, by the energy equivalence
δwTpij ¼Φ‴

bδw _vj _vj.
(iv) The following energy terms are computed for i; j¼ 0…m,

k¼ 1…m:

Aijk ¼Φ‴
b _vi _vj _vk

Bijhk ¼Φ⁗
b _vi _vj _vh _vk�Φ″

bðwijwhkþwihwjkþwikwjhÞ
Cik ¼Φ″

bw00wik

μk½λ� ¼ 1
2 λbðλ�1

2 λbÞΦ‴
bû

2 _vkþ1
6 λ

2
bðλb�3λÞΦ⁗

b û
3 _vk ð1gÞ

where the implicit imperfection factors μk are defined by the
4th order expansion of the unbalanced work on the funda-
mental path, i.e., μk½λ� ¼ ðλp̂�Φ0½λû�Þ _vk (see [19, Eqs.(31,32)]).

(v) The equilibrium path is obtained by projecting the equilibrium
equation [19, Section 3.4] on V. According to Eqs, (1)–(1g),
we have

1
2

Xm
i;j ¼ 0

ξiξjAijkþ
1
6

Xm
i;j;h ¼ 0

ξiξjξhBijhkþμk½λ�

�λb λ�1
2
λb

� �Xm
i ¼ 0

ξiCik ¼ 0; k¼ 1…m ð1hÞ

Eq. (1h) is an algebraic nonlinear system of m equations in the
mþ1 variables ξ0, ξ1…ξm, with known coefficients.

The software implementation of the asymptotic approach is quite
easy and its computational cost remains of the order of that required by
a standard linearized stability analysis [6]. Once the preprocessor phase
of the analysis has been performed (Steps i–iv), the presence of small
load and geometrical imperfections can be taken into account in the
post-processing phase (Step v), by adding some, easily computed,
additional imperfection terms in the expression of μk½λ�, with a
negligible computational cost, allowing for an inexpensive imperfection
sensitivity analysis. From Eq. (1h) we can also extract information about
the worst imperfection shapes [20,21] that we can use to improve the
imperfection sensitivity analysis or for driving more detailed investiga-
tions through specialized path-following analysis [22].

2.2. Imperfection sensitivity analysis

The geometry and loads of thin-walled structures are affected
by random distribution of small imperfections. In the proposed
asymptotic method, the presence of small imperfections expressed
by a load ~p½λ� and/or an initial displacement ~u affect Eq. (1g) only
on the imperfection term μk½λ� that becomes [6]

μk½λ� ¼ 1
2 λbðλ�1

2 λbÞΦ‴
bû

2 _vkþ1
6 λ

2
bðλb�3λÞΦ⁗

b û
3 _vkþμgk½λ�þμlk½λ� ð2Þ

with

μgk½λ�þμlk½λ� ¼ λ Φ‴
bû ~u _vk� ~p½λ� _vk

� �¼ λμk ð3Þ
The aim of the imperfection sensitivity analysis is to link the

presence of geometrical and load imperfections to the reduction of
the limit load. For structures presenting coupled buckling modes,
even a small load or geometrical imperfection may result in a
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