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a b s t r a c t

This paper presents a static analysis of functionally graded plates (FGPs) by using a new first shear
deformation theory (FSDT). This theory contains only four unknowns, with is even less than the classical
FSDT. In this paper a simply supported FG square sandwich plate is subjected to a bi-sinusoidal load. The
governing equations for static bending analysis are derived by employing the principle of virtual works.
These equations are then solved via Navier-type, closed form solutions. The accuracy of the present
theory is ascertained by comparing it with various available solutions in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) can be defined as
advanced materials having graded transition in mechanical prop-
erties, either continuous or in fine, discrete steps, across the
interface. This material is produced by mixing two or more
materials in a certain volume ratio (commonly ceramic and metal).
FGMs have been proposed, developed and successfully used in
industrial applications since 1980s [1]. These materials were
initially designed as a thermal barrier for aerospace structures
and fusion reactors. They are now being developed for general use
as structural components subjected to high temperatures. The
areas where FGM offer potential improvements and advantages in
engineering applications include a reduction of in-plane and
transverse through-the-thickness stresses, prevention or reduc-
tion of the delamination tendencies in laminated or sandwich
structures, improved residual stress distribution, enhanced ther-
mal properties, higher fracture toughness, and reduced stress
intensity factors [2].

Several analytical and numerical formulations to model the
behavior of single and multilayered structures are available in the
literature. Among them, the classical first-order shear deformation
theory (FSDT) based on Raissner and Mindlin, assume constant
transverse shear stresses in the thickness direction, thus the
theory need a shear correction factors to adjust for unrealistic
variation of the shear strain/stress. Nguyen et al. [15] studied the

shear correction factor for FGMs. The authors showed that the
shear correction factor for FGMs are not the same as for homo-
geneous plates, in fact, they showed that the shear correction
factor is as a function of the ratio between elastic moduli of
constituents and of the distribution of materials through the
models. In this paper, for simplicity purposes, the considered
shear correction factors are as in the paper by Carrera et al. [5].

Researchers have investigated the behavior of functionally graded
plates (FGPs) under mechanical loads using, mostly, both the classical
FSDT and the higher-order shear deformation theories (HSDT). In this
paper, relevant works on FGM based on the classical and modified
FSDTs was reviewed and presented in what follows. Zenkour [3]
studied the bending analysis of FGPs resting on elastic foundation
using the refined sinusoidal shear deformation theory, FSDT results
were also presented. Singha et al. [4] investigated the nonlinear
behavior of FGPs using the finite element method based on the FSDT.
The authors evaluated the shear correction factors employing the
energy equivalence principle.

Carrera et al. [5] evaluated the effect of thickness stretching in
functionally graded (FG) plates and shells by using Carrera’s Unified
Formulation (CUF), FSDT results were also presented. Valizadeh et al.
[6] studied the FGPs using a non-uniform rational B-spline based on
FEM. The plate kinematics is based on the FSDT. Thai and Choi [7]
presented a simple FSDT with four unknowns for FG plate considering
a division of the transverse displacement w into bending and shear
parts. (i.e. w¼wbþws). Thai et al. [8] analyzed the FG sandwich
plates composed of FG face sheets and an isotropic homogeneous core
by using a FSDT with four unknowns.

In the present paper, the static analysis of FGPs is studied by
using a new FSDT with four unknowns in which instead of
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derivative terms in the displacement field, integral terms are
presented for the first time. Such displacement field, which can
be further implemented in higher order shear deformation the-
ories, may require new mathematical strategies to numerically
solve the present theory due to its novelty. The simply supported
FG plate and sandwich plate is subjected to a bi-sinusoidal load.
The mechanical properties of the plates are assumed to vary in the
thickness direction according to a power law distribution in terms
of the volume fractions of the constituents. The governing equa-
tions of the FGPs are derived by employing the principle virtual
works. These equations are then solved via Navier solution. The
accuracy of the present code is verified by comparing it with other
HSDTs. Although similar results as the classical FSDT are found, the
reduced number unknowns of this theory play a key importance in
the performance. Consequently, the numerical solution may be of
paramount interest in future works.

2. Theoretical formulation

The mathematical model was built to solve both: (A) functionally
graded plates and (B) sandwich plates. The plates of uniform thick-
ness “h”, length “a”, and width “b” are shown in Fig. 1. The rectangular
Cartesian coordinate system x, y, z, has the plane z¼0, coinciding with
the mid-surface of the plates.

2.1. Functionally graded plates

The material properties for the plate of type A (Fig. 1a) vary
through the thickness with a power law distribution, which is
given below (Fig. 2a):

PðzÞ ¼ ðPt�PbÞV ðzÞ þPb ð1aÞ

V ðzÞ ¼
z
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where P denotes the effective material property, Pt and Pb denote
the property of the top (fully ceramic) and bottom (fully metal)

faces of the plate, respectively, and }p} is the exponent that
specifies the material variation profile through the thickness. The
effective material properties of the plate, including Young’s mod-
ulus, E, and shear modulus, G, vary according to Eqs. (1a) and (1b),
and Poisson ratio, }ν} is assumed to be constant.

In the plate of type B, the bottom skin is isotropic (fully metal)
and the top skin is isotropic (fully ceramic). The core layer is
graded from metal to ceramic so that there are no interfaces
between core and skins (see Fig. 1b).

The volume fraction in the core is obtained by adapting the
power law distribution (Eq. (1b)):

V ðzÞ ¼
z�h1
hcore

� �p

; ð2aÞ

h1rzrh2 ð2bÞ
where hcore is the thickness of the core.

2.2. Displacement base field

The displacement field of the new theory is given as follows:

uðx; y; zÞ ¼ uðx; yÞ�zk1

Z
θðx; yÞdx; ð3aÞ

vðx; y; zÞ ¼ vðx; yÞ�zk2

Z
θðx; yÞdy; ð3bÞ

wðx; y; zÞ ¼wðx; yÞ: ð3cÞFig. 1. Geometry of functionally graded plates. (a) FG plate. (b) Sandwich plate with
an FG core and isotropic skins.

Fig. 2. Functionally graded function VC along the thickness of an FG plate for
different values of the index “p”. (a) FG plate. (b) Sandwich plate with an FG core
and isotropic skins.
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