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a b s t r a c t

This paper introduces an accurate and computationally efficient GBT-based finite element, specifically
tailored to capture the materially non-linear behaviour of wide-flange steel and steel-concrete composite
beams up to collapse. The element incorporates reinforced concrete cracking/crushing, shear lag effects and
steel beam plasticity (including shear deformation of the steel web). A set of numerical examples is
presented, showing that the proposed element is capable of capturing all relevant phenomena with a very
small computational cost. In addition, analytical solutions for elastic shear lag are derived and the GBT modal
decomposition features are employed to extract valuable information concerning the effect of shear lag
phenomena up to collapse. For validation and comparison purposes, results obtained with shell/brick finite
element models are also presented.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Generalised Beam Theory (GBT) is a thin-walled prismatic bar
theory that extends Vlasov's classical beam theory [1] to effectively and
efficiently handle cross-section in-plane and out-of-plane (warping)
deformation, through the inclusion of so-called “cross-section defor-
mation modes”. GBT was introduced by Schardt almost 50 years ago
[2,3] and it has since been continuously and considerably developed.
Presently, GBT is well established as a very efficient and valuable tool
for analysing prismatic thin-walled beams—see, e.g., [4–7].

In the field of steel-concrete composite bridge linear analyses with-
out cracking effects, very promising results have been recently obta-
ined with GBT, due to its straightforward capability of including shear
lag and shear connection flexibility effects [8]. In particular, the effec-
tiveness of the GBT approach was demonstrated for:

(i) linear elastic analyses, including cross-section distortion, the
effect of transverse diaphragms, shear lag in wide flanges and
shear connection flexibility;

(ii) vibration analyses (i.e., natural frequencies and vibration
mode shapes), allowing for cross-section in-plane deforma-
tion and warping;

(iii) buckling analyses (i.e., lateral-distortional bifurcation loads
and buckling mode shapes) of I-beams under constant hog-
ging bending.

In all cases, it was shown that GBT can offer significant advantages
with respect to the standard shell finite element and finite strip
methods, namely due to its unique modal features, i.e., the fact that
the kinematic description of the beam is based on a superposition of
cross-section deformation modes with well-defined structural mean-
ings, i.e., that represent specific effects, such as warping, local-plate
bending, and distortion. This makes it possible to obtain accurate
solutions with a small number of modes (and thus a small number of
DOFs) and acquire valuable insight into the mechanics of the
problem addressed through the inspection of the relative participa-
tions of the modes.

More recently, elastoplastic GBT formulations have also been de-
veloped for bifurcation [9], geometrically linear [10] or fully non-linear
[11] analyses. These papers highlight that significant computational
savings may be achieved, without sacrificing accuracy, if appropriate
stress/strain components are set to zero and/or a shell-like stress
resultant approach is employed. Further elastoplastic GBT applications
are presented in [12].

This paper extends previous formulations by developing an
efficient physically non-linear GBT-based beam finite element speci-
fically aimed at capturing the global behaviour, up to collapse, of wide
flange steel and steel-concrete composite beams. In particular, rein-
forced concrete non-linear behaviour is introduced and combined
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with shear lag effects and steel beam plasticity. It should be noted that
modelling physically non-linear shear lag with beam elements is
rather challenging, particularly for very wide flanges, since (i) the
span-to-flange width ratio is small (which is somewhat in contra-
diction with the definition of a beam structural element) and, most
importantly, (ii) the neutral surface is invariably located in the flange
and the stresses vary rapidly across its thickness.

The formulation presented in this paper is characterised by an
appropriate trade-off between accuracy and computational efficiency,
which is achieved by taking advantage of the inherent characteristics
of GBT and aiming at simplicity (a key goal), namely:

(i) Membrane shear deformation is only allowed in relevant
cross-section zones, namely in wide flanges (to capture shear
lag effects) and in the web of the steel girder (to capture
vertical shear effects). These deformation types are allowed for
through the inclusion of appropriate deformation modes.

(ii) The stress and strain fields are appropriately constrained in
order to limit the number of admissible deformation modes
and also to make it possible to employ simple material models
for concrete and steel.

The outline of the paper is as follows. Section 2 starts by reviewing
the fundamental aspects of a general physically non-linear GBT-based
beam finite element. Then, the formulation is particularised for an
efficient allowance of non-linear shear lag effects in wide flange steel
and steel-concrete beams. Section 3 presents a set of applications,
including numerical illustrative examples, concerning steel and steel-
concrete beams, ranging from purely elastic problems (including
analytical results) to more complex physically non-linear cases. For
comparison and validation purposes, results obtained with shell and
brick finite element models, using ADINA [13] and ATENA [14],
respectively, are also presented. Finally, the paper closes with a few
concluding remarks.

2. Finite element formulation

2.1. Fundamental equations

The beam finite element fundamental equations correspond to
those employed in [10,11], although geometric non-linearity is not
considered in the present work. With the Kirchhoff assumption for
thin plates and the wall mid-surface local axes shown in Fig. 1, the
displacement vector for each wall, U , is expressed as

Uðx; y; zÞ ¼
Ux

Uy

Uz

2
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3
75¼ ΞU ðyÞþzΞU ðyÞ
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where the comma indicates a differentiation, ϕðxÞ is a column
vector containing the deformation mode amplitude functions (the
problem unknowns) and matrices ΞU ðyÞ;ΞUðyÞ read
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where uðyÞ, vðyÞ, wðyÞ are column vectors containing the displace-
ment functions of the wall mid-line along x, y, z, respectively, for each
deformation mode. For arbitrary flat-walled cross-sections, these
displacement functions may be determined from the procedures
outlined in [15,16].

The non-null small-strain components are grouped in vector
εt ¼ ½εxx εyy γxy�, which may be subdivided into membrane (M) and

bending (B) components, viz.

ε¼ εMþεB ¼ ΞM
ε ðyÞþzΞB
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with the auxiliary modal matrices

ΞM
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In general, a plane stress state is assumed in each wall (varying
along x; y; z) and the non-null components are grouped in vector
σt ¼ ½σxx σyy σxy�, which is related to the strains for a particular
constitutive law . Within a Newton–Raphson iterative solution, the
tangent stress–strain relation is written as

dσ ¼ Ct dε; ð6Þ
where Ct is the consistent tangent constitutive matrix pertaining
to the particular stress return mapping algorithm employed.

The finite element is obtained by interpolating the amplitude
functions according to ϕ¼Ψd, where matrix Ψ contains the inter-
polation functions and vector d contains the unknowns (nodal values
of the amplitude functions). Both Hermite (cubic) and Lagrange
quadratic polynomials are employed, with the latter associated with
the deformation modes that only involve warping displacements.

Finally, the out-of-balance force vector g, the tangent stiffness
matrix K t and the incremental load vector Δf are obtained from
the numeric integration of the expressions

g ¼
Z
V

Ψ
Ψ;x

Ψ;xx
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Δf ¼
Z
Ω

Ψ
Ψ;x

" #t

Ξt
U Δq dΩ; ð9Þ

where q are forces acting along the walls mid-surface Ω (for
simplicity, volume forces are not considered).

2.2. Particularisation for shear lag analysis

Although a suitable physically non-linear GBT-based beam finite
element is obtained with the formulas of the preceding section, no
significant reduction of DOFs with respect to a standard shell model is
achieved without further enhancements. Therefore, additional mod-
ifications and simplifications need to be introduced, by taking advan-
tage of the particular characteristics of the problem being addressed:
capture the global non-linear behaviour of steel and steel-concrete
composite beams, including concrete/steel material non-linearity and
shear lag. The particular modifications/simplifications adopted are
described next.

It is assumed that the cross-sections are of the type shown in
Fig. 1(b), comprising a concrete slab with longitudinal steel reinfor-
cement and a steel I-beam. The corresponding wall mid-lines,
which constitute the basis of the GBT kinematic description, are
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