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presents a solution similar to Stowell's which is applicable to pin-ended flange elements. Aspects not
considered in Stowell's work, such as the use of elliptic functions to describe the gradual change of mode
shape from sinusoidal to essentially linear, and the gradual and asymptotic changes in axial rigidity in the
post-buckling range are described in the paper. The paper also presents comparisons between the
behaviour of pin-ended and fixed-ended flange elements. Finally, simple strength equations for flange

elements in uniform compression based on the first yield criterion are derived.
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1. Introduction

Stowell [1] presented an analysis of the buckling behaviour of
flange elements based on a solution to the equation for nonlinear
torsion of a cruciform in compression. The analysis was premised
on the assumption that the element was fixed against flexural
rotations at the ends, a condition representing relatively thick
elements for which the thickness dimension is adequate to prevent
rotations, as shown in Fig. 1a. However, thin-walled metal construc-
tion today is increasingly concerned with very thin elements for
which the resistance to rotation is small and overcome soon after
buckling commences. Such elements are more appropriately mod-
elled as pin-ended, as shown in Fig. 1b. This paper presents a solution
to a pin-ended flange element based on Stowell's work.

2. Elliptic integrals and functions

There exist elliptic integrals of the first, second and third kinds,
e.g. see [2]. The elliptic integrals of the first and second kinds are
defined as,

?
u:F(go,k):/ S M)
0 V1- k’sin’a
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@
E(go,k):/0 \1—k*sin’a da 2)

respectively, where k is a parameter known as the elliptic
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modulus, (0 <k<1), and ¢ is the amplitude of u, or p=am(u).
When @ =m/2, the integrals above are said to be “complete”, and
the following notation is used,

/2 da

V1= Kk sin’a

K(ky= 3

and

_ z/2
E(k)= / \V1- k*sina da 4)
0

The elliptic sine (sn), cosine (cn) and delta (dn) functions are
defined as inversions of u as follows:

sn(u, k)= sin @ (5)
cn(u, k) = cos @ (6)

dn(u, k)= /1— k*sin’¢ (7)

The (k)'s will be omitted in utilising the notation, for brevity (e.g.
sn(u, k) = sn(u)). The elliptic sine function has the following beha-
viour at the limits of the elliptic modulus:

sn(u, 0)= sin u ®)
and
ll(irrll(sn(u, k))= tanhu (©))

This transition of the elliptic sine function from a circular sine
to a hyperbolic tangent explains the change of shape of the
solutions for the twist rotation and longitudinal strain as buckling
progresses (Section 3).
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3. Solution for the twist rotation

Consider a cruciform column consisting of four identical flange
elements of width b and thickness t, as shown in Fig. 2a. The
element is subject to a uniform shortening (6) under the action of
the axial compression force (P).

Stowell's work is founded in the observation that the buckling
displacement of flange elements is essentially linear across the
width of the element, as shown in Fig. 2c. As such, the solution for
the buckling of a flange element can be obtained as the solution
for the torsional buckling of a cruciform in uniform compression.

The differential equation for the twist rotation (€) of a member
in non-linear non-uniform torsion [1,3] is,

IL\NdO . d’0 1. (dO\®
(G]— Pﬂa_EIWWJr Eln (ﬁ) =T (10)

where T=0 (for this problem), G=E/(2(1+v)) and the geometric
properties are taken for a single flange element as follows: A=bt,
I,=1/3b%,]=1/3bt3, I,=1/36b°¢ and I, =4/45b’t. Substituting these
expressions into Eq. (10) and using the notation ()’ =d( )/dx, the
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Fig. 1. Fixed and pinned end conditions. (a) Fixed-ended boundary conditions,
(b) Pin-ended boundary conditions.
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equilibrium equation is obtained as,

t/b? |, 8(b\* )3
6“"2(1+v)]95<r> ©° =0 an

12
I3

0 +

where the average strain is defined as

P
Eaqv = EA (12)
On making the substitutions,
v»=b6 (13)
X
£=% (14)
m? =12 eq— (t/by (15)
Y21 +v)

where y, is the rotation of the fibre at the free edge, as shown in
Fig. 2d, the governing equation is obtained as,

. 8
7b+m27b—§73 =0 (16)

in which () =d( )/dE. The solution to Eq. (16) is [1],

E+éy=+ /A“ ars 7 17)
Jo [c2—m2y?+4/5y]]

where &y and c are arbitrary integration constants to be obtained
from the boundary conditions. It is here assumed that the twist
rotation is periodic and antisymmetric about the end cross-section
while symmetric about the centre, as shown in Fig. 1b, whereby
the boundary conditions may be expressed as y,=0 at x=0 and
x=L, where the origin of the x-axis is chosen at mid-length. The
condition y,=0 at x=0 implies that £,=0.
Making the substitutions,

——_c? (18)

———? (19)

and defining the variables,

Tanwl

g Siny=" (20)

and
h

k=— 21
g (21)
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Fig. 2. (a) Cruciform in compression, (b) flange element, (c) torsional buckling, and (d) fibre rotation.
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