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a b s t r a c t

Buckling of functionally graded cracked plates under tension has not been investigated so far. In this
paper critical buckling load of functionally graded plates containing a crack has been obtained using
classical plate theory through the finite element method. Displacement in vicinity of crack tips has been
approximated using previous solutions related to bending of cracked plates. Effect on buckling of plate
under uni-axial and bi-axial tension of different parameters, such as plate dimensions and material
properties, are studied. Results show that the critical load decreases as material gradient index increases,
while bi-axial loading leads to higher critical loads compared to uni-axial case.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are microscopically inho-
mogeneous composites that have a smooth and continuous varia-
tion of material properties with spatial coordinates. FGMs are
highly resistant to temperature gradients and are preferred to
laminate composites because they are not composed of different
plies and are safe against delamination. The advantages of FGMs
have increased their popularity in engineering applications
and have attracted the attention of researchers to gain a better
understanding of their mechanical behavior. Buckling is a mode of
failure which a structure can experience in certain situations.
Imperfections like cracks, which can be created in a FGM structure
deliberately or undesirably during the production or use of the
structure can affect the buckling behavior. Therefore the study of
buckling of structures like plates which contain cracks can provide
useful information to designers.

Many studies have been done on mechanical and thermal
buckling of functionally graded plates (FGPs) with no cracks.
Shariat et al. [1] presented the exact solution for buckling behavior
of rectangular functionally graded plates with geometrical imper-
fections using classical plate theory. The plate was assumed to be
under in-plane compressive loads. Shariat and Eslami [2] obtained
the exact solution for buckling of rectangular thick functionally
graded plates under mechanical and thermal loads, using the
third-order shear deformation plate theory. Wu et al. [3] found

analytical solution for the post-buckling response of the function-
ally graded plate, subjected to thermal and mechanical loads,
based on the first-order shear deformation plate theory. Zhao
et al. [4] investigated the mechanical and thermal buckling of
functionally graded plates based on first-order shear deformation
plate theory, using the element-free kp-Ritz method. Bodaghi
and Saidi [5] solved the equilibrium and stability equations for
buckling of thick functionally graded rectangular plates based on
the higher-order shear deformation plate theory using Levy-type
analytical solution. Latifi et al. [6] studied the effect of various
boundary conditions, using Fourier series expansion, on the
buckling of thin rectangular functionally graded plates subjected
to proportional biaxial compressive loadings based on classical
plate theory. Lal et al. [7] used the nonlinear finite element
method for post-buckling analysis of functionally graded plates
under mechanical and thermal loads using higher-order shear
deformation theory.

Buckling of cracked plates has been studied by many researchers.
Shaw and Huang [8] presented the finite element formulation for the
buckling analysis of homogeneous cracked plates subjected to uni-
axial tensile loads using on von Karman's theory. Kumar and Paik [9]
extracted the governing differential equation for the buckling of
homogeneous plates with edge and central crack under uniaxial and
biaxial compressive and in-plane shear loads. They used the hier-
archical trigonometric functions which satisfied various boundary
conditions. Brighenti used the finite element method for the buckling
analysis of variously cracked rectangular homogeneous thin-plates
under tension and compression [10,11], and shear loads [12]. He
studied the effect of variation of mechanical properties such as
Poisson's ratio on critical buckling load. Seifi and Khoda-yari [13]
carried out experimental and numerical studies on the critical
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buckling load of homogeneous plates with central inclined crack
subjected to uni-axial compression. Pan et al. [14] introduced an
improved hybrid semi-analytical method for calculating elastic
buckling load of a thin homogeneous plate with a central straight
through-thickness crack subjected to axial compression using
Raleigh–Ritz energy method. Several works have been done on
vibration of cracked functionally graded beams [15,16] and plates
[17–21].

Buckling of cracked functionally graded beams has been stu-
died by few researchers. Ke et al. [22] studied the post-buckling
response of beams made of functionally graded materials containing
an edge crack, based on Timoshenko beam theory and von Karman
nonlinear kinematics using Ritz method. Yang and Chen [16] pre-
sented analytical solutions for the free vibration and the buckling of
functionally graded beams with edge cracks by using Bernoulli–Euler
beam theory and the rotational spring model.

To our knowledge only one work [23] has been done on
buckling of functionally graded plates containing cracks. While
the focus of this work is on buckling of cracked functionally graded
plates under compression, buckling of cracked plates under ten-
sion is also crucial in design problems; in fact a cracked plate can
also buckle under tension because of large compressive stresses
created near cracked area.

In the current study the buckling behavior of functionally
graded plates under uni-axial and bi-axial tension loads has been
investigated. The classical plate theory (CLPT) considering von
Karman's moderate rotation kinematics has been used in frame-
work of finite elements to obtain critical buckling loads for
different plate dimensions, crack orientations and mechanical
properties. For elements surrounding the crack tips special for-
mulation has been used which relies on previous solution of
bending of cracked plates. Pre-buckling solution has been obtained
prior to solving buckling eigenvalue problem, using quarter-point
elements around crack tips.

2. Fundamental equations

Specifications and dimensions of studied plate are depicted
in Fig. 1. The geometry includes length a, width b, total thickness h,
and length of crack d. The crack has angle γ with respect to the
y axis.

2.1. Kinematics

Based on classical plate theory, the displacement field is defined
as follows [24]:

uðx; y; zÞ ¼ �z
∂w0

∂x
; vðx; y; zÞ ¼ �z

∂w0

∂y
; wðx; y; zÞ ¼w0ðx; yÞ ð1Þ

where u; v; and w are the Cartesian components of displacement
field at any generic point ðx; y; zÞ in the x, y, and z directions,
respectively. w0 shows lateral displacement of plate's mid-surface.

In the present study, the displacement in the in-plane directions on
the mid-surface are assumed to be zero.

The von-Karman's strains can be written as follows [25]:
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The strain–displacement relation can be rewritten in the vector
form, as follows:

ε¼ εðNLÞ þz εð1Þ; ε¼ ½ εxx εyy γxy � ð3Þ

where
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2.2. Constitutive law for functionally graded materials

In a functionally graded material some properties of the
material change continuously as a specific function of the coordi-
nates. In present study, it is assumed that material only changes
along thickness by Reddy's power law; for an arbitrary property it
can be written as follows [24]:

pðzÞ ¼ ptVtðzÞþpbð1�VtðzÞÞ ð5Þ
where pt and pb are the property's values at the top and bottom
of the plate. The term Vt is called volume fraction and can be
expressed as:

VtðzÞ ¼
2zþh
2h

� �n

ð6Þ

where n is called gradient index and z is the coordinate along
thickness as shown in Fig. 1. For n¼0 this equation represents a
homogeneous plate. In the current study one of the most common
types of FGM plates, which consists of pure ceramic at top and
pure metal at bottom, is considered.

Using the thin plate theory for a functionally graded plate,
the stress–strain relation, can be written as follows [25]:

r¼Qε; rT ¼ f sxx syy τxy gT ð7Þ

where Q is the reduced elastic stiffness matrix, defined as:

Q ¼ EðzÞ
ð1�υ2Þ

1 υ 0
υ 1 0
0 0 ð1�υÞ=2

0
B@

1
CA¼ A1EðzÞ ð8Þ

Therefore the moments created by the stresses associated to
the linear part of ε (see Eq. (3)), M¼ fMx My Mxy gT could be
obtained as [25]:

M¼
Z h=2

�h=2
r zdz¼Dεð1Þ ð9Þ

where D¼A1ð
R h=2
�h=2 EðzÞz2dzÞ:

2.3. Finite element model

2.3.1. Stability equation
In this section, we extract the flexural and geometric stiffness

matrices by applying variational principles to potential energy
functions. The total potential energy of a single plate element can
be divided in two parts [25]:

Π ¼ΠSþΠExt ð10ÞFig. 1. Plate with central crack under uni-axial tension.
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