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a b s t r a c t

In this paper, post-buckling of rectangular composite plates rotationally restrained at the longitudinal
unloaded edges and subjected to end shortening strain at the simply-supported loaded edges is analyzed
using the first-order shear deformation plate theory-based spline finite strip method, and its application
to post-local-buckling of fiber-reinforced plastic (FRP) composite structural shapes is illustrated with
discrete plate analysis. Two cases of elastically- and rotationally-restrained plates are analyzed using the
spline finite strip method: rotationally-restrained along both the unloaded boundary edges (RR) and one
rotationally-restrained and the other free along the unloaded edges (RF). The two cases of rotationally-
restrained plates (i.e., the RR and RF plates) are further treated as the discrete plates of closed and open
section FRP shapes, and by considering the effect of elastic restraints at the joint connections of flanges
and webs, post-local-buckling of various FRP shapes under end shortening is studied. The numerical
comparisons with the finite element modeling demonstrate that the proposed discrete plate analysis
technique and spline finite strip method can be used as an efficient and valid tool for post-local-buckling
analysis of FRP shapes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The panels with either simply-supported or clamped supported
on their unloaded edges are often ideal ones which are the limited
boundary conditions in analysis. It is well known that the panels
are often restrained at the boundaries in practice. To the authors'
knowledge, there are only a few existing studies in the literature
on the post-buckling analysis of panels with elastically-restrained
boundary conditions. Rhodes and Harvey [1] presented an analysis
for post-buckling behavior of thin flat plates in compression with
their unloaded edges elastic restraint against rotation using energy
method. Khong and Ong [2] performed a post-buckling analysis of
a thin flat rectangular plate with unloaded edges subjected to
various support boundary including equal or unequal degree of
elastic restraint against rotation and translation based on the
principle of minimum potential energy. Bisagni and Vescovini [3]
proposed an analytical formulation for the study of local skin
buckling load and nonlinear post-buckling behavior of isotropic
and composite stiffened panels subjected to axial compression. In

their study, the skin is modeled as a thin plate, while the stiffeners
are considered as torsion bars in the analysis. Stamatelos et al. [4]
developed an analytical methodology for local buckling and post-
buckling behavior of isotropic and orthotropic stiffened plates.
Their approach considered the stiffened panel segment located
between two stiffeners, and the remaining panels are replaced by
the equivalent transverse and rotational springs of varying stiff-
ness and act as the elastic edge supports.

The finite strip method is an effective and versatile numerical tool,
and it has been used for post-local-buckling analysis of prismatic
structures by many authors. Graves-Smith and Sridharan [5,6] first
investigated the post-local-buckling behavior of isotropic prismatic
thin walled structures under end shortening using the finite strip
method. Hancock et al. [7–9] studied the post-local-buckling of thin-
walled structures applying both the finite strip method and spline
finite strip method. Dawe et al. [10] described a finite strip method for
analysis of the post-local-buckling behavior of composite laminated,
orthotropic prismatic plate structures subjected to progressive uniform
end shortening. Ovesy et al. [11] developed a semi-energy finite strip
approach for the post-local-buckling analysis of geometrically-perfect
thin-walled prismatic structures under uniform end shortening.

Fiber-reinforced plastic (FRP) composite structural shapes have
been commonly used in the aerospace, automotive, marine and
construction industries. Problems associated with large elastic
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deformation and local buckling/post-buckling are common in
current design of FRP shapes [12,13]. The local buckling analysis of
FRP shapes could be investigated by modeling the flanges and webs
individually and considering the flexibility of the flange-web connec-
tion. In this type of simulation, each flat panel of prismatic FRP shapes
is modeled as a composite plate subjected to elastic rotational
restraints along the unloaded edges (i.e., the flange-web connection)
[12,13]. The webs of box-, I-, C- and Z-sections can all be modeled as a
plate rotationally- and elastically-restrained at two unloaded edges
(RR) and loaded in compression at two opposite edges (Fig. 1(a)) [14].
Similarly, the flanges or webs of T- and L-sections and the flanges of I-,
C- and Z-sections can all be simulated as a plate rotationally- and
elastically-restrained at one unloaded edge and free at the other
unloaded edge (RF) (see Fig. 1(b)) [15].

In this paper, the post-buckling behavior of FRP plates elasti-
cally- and rotationally-restrained along the unload edges and
under the end shortening is presented using the spline finite strip
method, and the accuracy of the method is validated against the
results of finite element analysis. Then, the method is used to
predict the post-local-buckling behaviors of pultruded FRP shapes,
by considering the discrete laminated plates or panels as compo-
nents (e.g., flanges or webs) of FRP shapes rotationally-restrained
along one or both unloaded edges. The discrete plate analysis is
validated by comparing the post-buckling behavior of the
rotationally-restrained plates from the FRP shapes using the
proposed spline finite strip method with those of the whole FRP
shapes by both the spline finite strip and finite element methods.

2. Theoretical formulations

2.1. Cubic B-spline function

The cubic B-spline function with equal spacing is chosen as the
longitudinal functions in the finite strip analysis. The uniform
cubic B-spline function (Fig. 2) is expressed as

φi ¼
1
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If the longitudinal direction is divided into M equal spaced
sections, there are a total of Mþ3 spline interpolation parameters.
The longitudinal displacement function f ðyÞ can be approximately
assumed by a linear combination of base functions φiðyÞ as

f ðyÞ ¼ ∑
Mþ1

i ¼ �1
αiφiðyÞ or f ðyÞ ¼ fφgTfαg ð2Þ

where the base function vector and the interpolation para-

meter vector are fφg ¼ ½φ�1 φ0 φ1 … φM�1 φM φMþ1�T
and fαg ¼ ½α�1 α0 α1 … αM�1 αM αMþ1�T, respectively.

In order to satisfy the prescribed boundary conditions, the
variables α�1 and αMþ1 can be replaced by the function values of
f ðyÞ at y¼0 and a, respectively. The modified vector fβg can be
obtained by

fβg ¼ ½T �fαg ð3Þ
where fβg ¼ ½f ð0Þ α0 α1 … αM�1 αM f ðaÞ�T, and
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Eq. (2) then becomes

f ðyÞ ¼ fφgTfβg ð4Þ
where fφg ¼ fφgT½T ��1.

2.2. Spline finite strip method

Based on the first order shear deformation plate theory
(FSDPT), the displacements of the middle surface of the plate
u0ðx; yÞ, v0ðx; yÞ, w0ðx; yÞ, and the rotations of the normal to the
middle surface ϕx

0ðx; yÞ and ϕy
0ðx; yÞ under the end shortening

strain ε can be written as

u0ðx; yÞ ¼ u
v0ðx; yÞ ¼ ε a

2�y
� �þv

w0ðx; yÞ ¼w

ϕ0
xðx; yÞ ¼ ϕx

ϕ0
yðx; yÞ ¼ ϕy

ð5Þ

In the context of spline finite strip analysis, the displacements u, v
and w, and the rotations ϕx and ϕy are expressed as a product of

Fig. 1. Rotationally- and elastically-restraned plate elements in FRP shapes. (a) RR plate element (b) RF plate element.

Fig. 2. The uniform local cubic B-spline function φi (y)
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