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ABSTRACT

In this paper the generalization of the constrained finite strip method (cFSM) is discussed. cFSM is a
special version of the semi-analytical finite strip method (FSM), where carefully defined constraints are
applied which enforce the thin-walled member to deform in accordance with specific mechanics, e.g., to
allow buckling only in flexural, lateral-torsional, or a distortional mode. In the original cFSM only open
cross-section members are handled, here the method is extended to cover any flat-walled member,

including those with closed cross-sections or cross-sections with open and closed parts. Moreover, in the
Keywords: original cFSM only 4 deformation classes are defined, here the deformation field is decomposed into
Constrained finite strip method additional, mechanically meaningful, sub-fields. Formal mechanical criteria are given for the deforma-
Arbitrary cross-section tion classes, and implementation of the criteria regardless of cross-section topology is illustrated. In this
paper, the primary deformation classes are presented in detail. Primary deformations are associated with
minimal cross-section discretization, i.e. nodal lines located at folds and ends only. This paper is
accompanied by a companion, where secondary modes and additional practical aspects in the selection
of base vectors for the deformation classes are discussed. With the proposed modifications the powerful
cFSM capabilities of buckling mode decomposition and identification are extended to essentially
arbitrary thin-walled cross-sections.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled members possess complicated stability behavior. If subjected primarily to longitudinal stresses, three characteristic
buckling classes are usually distinguished: global (G), distortional (D), and local-plate (L) buckling. Although in practical situations these
modes rarely appear in isolation, typically some modal coupling is involved, the GDL classification has still been found useful for capacity
prediction, and appears either implicitly or explicitly in current thin-walled design standards, e.g. [1,2]. Capacity prediction requires the
critical loads associated with the various buckling classes. In case of the Direct Strength Method [1] the buckling mode classification is
directly applied. However, critical load calculation for the various buckling classes is also part of the Effective Width Method [2], though in
some cases the critical loads are embedded in the background of the provided formulae. Critical load calculation for thin-walled members
is usually accomplished by one of three numerical methods: (i) the shell finite element method (FEM), (ii) generalized beam theory (GBT),
and/or (iii) the finite strip method (FSM).

FEM, by using shell finite elements, is general and can be used to analyze almost any thin-walled member. However, FEM is not able to
decompose the various buckling classes, which often makes capacity calculation ambiguous. As a result, shell FEM is essential in research,
but not efficient in practical design.

GBT has shown that buckling deformations may be formally treated in a modal nature that mechanically separates global, distortional,
local, and other deformations. This formal separation is integral to GBT, and allows pure buckling mode calculations and measurements of
modal participation in coupled modes. GBT was first worked out for unbranched open and simple closed cross-sections [3], then later
extended to more general flat-walled cross-sections [4] as well as to some curved cross-sectional shapes (e.g., [5]). A free-to-use computer
program (GBTUL) has also been worked out, which first handled basic cross-section shapes only [6], then very recently extended to more
general cross-sections [7].
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FSM is based on the work of Cheung [8], but popularized by Hancock [9] who provided the organizing thrust of today's member design,
which later evolved into the Direct Strength Method (DSM) [10]. Hancock introduced the notion of the signature curve, from which quasi-
pure buckling modes and associated loads could be determined, at least for typical design. Accessibility of FSM was enhanced by the
introduction of the open source software CUFSV, first for pin-ended [11], but later for other end restraints [12]. Note that in all these FSM
implementations (similarly to GBT) the primary loading is assumed to be longitudinal stresses, but recently FSM has also been applied to
analyze shear buckling [13] of thin-walled members.

The mechanical criteria embedded in GBT led to the development of a special version of FSM, the constrained Finite Strip Method
(cFSM), also implemented into CUFSM. cFSM possesses the ability of modal decomposition as well as mode identification in a manner
similar to GBT [14-20]. In fact, cFSM and GBT have been extensively compared and found nearly coincident in their end results [21,22],
even though the roots of the two methods are distinctly different.

Although cFSM can be considered as a theoretically interesting, and practically useful tool, it is not complete in its original form. cFSM is
theoretically interesting, since it is the first method that provided a full and mechanics-based decomposition for a general deformation
field. cFSM is practically useful, since it makes the design of thin-walled (especially cold-formed steel) members more straightforward and
less subjective. However, cFSM is not complete, since it has three major limitations in its current development: (i) inherent limitations of
FSM, (ii) limitations in the mechanical criteria used to separate the deformation classes, and (iii) currently only open cross-sections are
covered.

A significant source of cFSM limitations derive from FSM itself. FSM requires that the member is flat-walled and prismatic, end
restraints cannot be arbitrary, and discrete intermediate supports (along the length) cannot easily be handled. The requirement of
prismatic sections, shared also by GBT, prevents direct application to tapered members, and members with holes. Recent works are aimed
at partially removing these limitations, by applying cFSM base functions or GBT cross-section deformation modes to modal identification
of shell FEM deformations fields [23-27], or by applying the constraining technique for spline FSM [28] or shell FEM [29,30], or by working
out methods for the analysis of members with holes [31-35].

Another source of cFSM limitation is due to the mechanical criteria used for separation, the same criteria embedded in GBT. Specifically,
although separation of D and L deformations is always possible, it leads to practically unsatisfactory results if the cross-section has small
stiffeners or rounded corners. Recent proposals have been made on how to overcome these problems, at least for capacity prediction [36-38].

The third major source of current cFSM limitations is that closed cross-sections (or any cross-section with one or multiple closed parts)
are excluded as originally proposed [14-17] and implemented into CUFSM [11,12]. Exclusion of closed cross-sections is partially due to the
superficial handling of in-plane shear deformations (i.e., shear modes). The role of in-plane shear deformations are fully detailed in
[39,40], and result in a new shear mode decomposition for cFSM. Careful implementation of the new shear modes is required for closed
cross-sections, but also useful and practically meaningful for any cross-sections, and makes it possible to reproduce global buckling modes
similar to those of shear-deformable beam theories. Since the original derivations only applied to open cross-sections generalization of the
cross-section and incorporation of the new shear modes requires new notations and formulation for cFSM, as presented here.

In this paper, and its companion [41] the generalized cFSM is presented. In this paper the so-called primary modes are introduced:
those deformation modes which are associated with minimal cross-section discretization (i.e. when nodal lines located at folds and ends
only). In the companion paper the secondary modes are presented (i.e. those which exist only if flat plates are discretized into multiple
strips), as well as some practical aspects are discussed and numerical examples are given.

2. Outline
2.1. FSM essentials

The finite strip method (FSM) is a shell-model-based discretization method. By utilizing longitudinal regularity, a common
characteristic in thin-walled members, FSM requires a significantly smaller number of degrees of freedom (DOF) than the shell finite
element method (FEM). Members are discretized into longitudinal strips as shown in Fig. 1. Note, in this paper (which focuses on primary
modes only) only one strip per flat of the member is applied, as shown in Fig. 1. (Note, Fig. 1 illustrates the nodal displacements for the
simplest longitudinal shape function as given in Eq. (2.4), with m=1.)

Within a strip, local displacement fields u, v, and w are expressed as follows [8]:
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where a is the member length, and b is the strip width. For the simplest pin-pin end restraints the longitudinal shape functions are as
follows:
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