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a b s t r a c t

Based on the vibro-acoustical model, an effective new approach to nondestructively predict the elastic
critical hydrostatic pressure of a submerged elliptical cylindrical shell is presented in this paper. Based on
the Goldenveizer–Novozhilov thin shell theory, the vibration equations considering hydrostatic
pressures of outer fluid are written in the form of a matrix differential equation which is obtained by
using the transfer matrix of the state vector of the shell. The fluid-loading term is represented as the
form of Mathieu function. The data of the fundamental natural frequencies of the various elliptical
cylindrical shells with different hydrostatic pressure and boundary conditions are obtained by solving
the frequency equation using Lagrange interpolation method. The curve of the fundamental natural
frequency squared versus hydrostatic pressure is drawn, which is approximately straight line. The elastic
critical hydrostatic pressure is therefore obtained while the fundamental natural frequency is assumed
to be zero according to the curve. The results obtained by the present approach show good agreement
with published results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical shells are widely used in various underwater and
marine structures. Since the elastic buckling load plays a very
important role in the safety of those structures, numerous research-
ers have investigated the elastic buckling pressure of cylindrical shell
with various methods [1–3]. In the past, the nondestructive predic-
tion approach of the buckling loads also has been studied by many
authors with experiments and FEM simulations. However, simulation
analysis [4–6] needs heavy workload, while experimental method
[7,8] is costly and time-consuming. In the view of the disadvantages
of the two methods, theoretical method has been widely used
recently [9,10]. Plaut [11] revealed the relationship between square
of the fundamental natural frequency and critical load. Then they
forecast the upper and lower bound of critical load of cylindrical
shell. Recently, Zhu et al. [12] have proposed a new analytical method
to nondestructively predict the elastic critical pressure of a sub-
merged cylindrical shell based on wave propagation method.

Those investigations mainly focus on the elastic buckling of
circular cylindrical shells. However, the elliptical cylindrical shells
are quite common in the practical applications due to the manufac-
turing tolerance [13] and other special manufacturing requirements

[14]. Since the curvature of cross section of the elliptical shell is
unevenly distributed, both the theory and method which were used
to study the circular cylindrical shell problems cannot be directly
applied to elliptical shell due to its cross section is noncircular. Also,
because of the particular geometry characteristics of the cross
section, greater mathematical challenges are posed and closed-
form analytic solutions cannot be obtained, numerical or approx-
imate techniques are necessary to deal with the problem of elliptical
cylindrical shells. Researches on elliptical cylindrical shells are much
less than those on cylindrical shells. Moreover, there have been very
few isolated analytical studies on the vibro-acoustic model of
elliptical cylindrical shells because the solution of wave equation in
elliptical coordinate are much complex than that in cylindrical
coordinates. The only scanty papers which involve the vibro-
acoustic model of elliptical cylindrical shells [15,16] present a limited
discussion and were focused on the sound propagation in the
elliptical ducts. Due to the above reasons, researches on the elastic
buckling of submerged elliptical cylindrical shells based on vibro-
acoustic model are seldom reported.

We intend to address this challenge by developing the vibro-
acoustic model for elliptical cylindrical shell structures subject to
hydrodynamic loading to predict the elastic critical load. In this
paper, the hydrostatic pressure of outer fluid is considered as an
external load imposed on the shell. Then, the vibration equations
containing the hydrostatic pressure term are written in a matrix
differential equation by using the transfer matrix. The fluid-loading
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term is represented as the form of Mathieu function. The natural
frequencies are obtained by solving the frequency equations which is
dependent on the boundary conditions. The elastic critical pressure is
obtained by fitting the curve of the fundamental frequency squared
versus hydrostatic pressure with straight line. The results of the
degradation model that obtained by the present method agree pretty
well with those of existing literatures.

2. Vibration equations of the shell

2.1. System description

A thin-walled, finite length elliptical cylindrical shell with
density ρ, Young's modulus E and Poisson's ratio v is shown in
Fig. 1. The semi-major and semi-minor axes are a and b respec-
tively. The length and thickness of the shell is L and h, respectively.
The axial, circumferential and normal displacements of the shell
are represented by u; υ;w respectively. The shell is referred to an
elliptic coordinates ðξ; η; zÞ. R is the variable radius of curvature
which is related to coordinate η and is defined as R¼ RðηÞ. r0 is the
radius of a circular cylindrical shell which has the same perimeter
as that of the cross section of the elliptical cylindrical shell and it
means an average radius of the noncircular cross section.

According to Fig. 1, elliptic coordinates and Cartesian coordi-
nates have following relations:

x¼ f cosh ξ cos η ð1aÞ

y¼ f sinh ξ sin η ð1bÞ

z¼ z ð1cÞ
where f is the focal length,

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

q
ð2Þ

The outer surface of the cross section is defined by ξ¼ ξ0 and
the geometrical relation between ξ0 and the semi-major axis a and
the semi-minor axis b is

ξ0 ¼ arctanhðb=aÞ ð3Þ
According to Eqs. (1a) and (1b), each point on the outer surface

of the cross section in the Cartesian coordinates can be written as

x¼ f coshξ0 cos η ð4aÞ

y¼ f sinh ξ0 sin η ð4bÞ
From Eqs. (4a) and (4b), the following equations can be derived

immediately:

dx¼ –f cosh ξ0 sin ηdη ð5aÞ

dy¼ f sinh ξ0 cos ηdη ð5bÞ
The arc length element ds of the outer surface of the cross

section along the circumferential direction is given by

ds¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2þdy2

q
ð6Þ

Substituting Eq. (5) into Eq. (6), it follows that

ds¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ξ0 sin

2ηþsinh2ξ0 cos 2η

q
dη ð7Þ

For convenience, denoting that

ϕðηÞ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ξ0 sin

2ηþsinh2ξ0 cos 2η

q
ð8Þ

Now, Eq. (7) can be rewritten in a compact form:

ds¼ ϕðηÞdη ð9Þ

2.2. Governing equations

For a submerged elliptical cylindrical shell, the outer hydro-
static pressure, p0, can be divided into a uniform normal pressure
on the shell wall and an axial compression applied at the two
edges. The respective circumferential force N0

η and the axial force
N0

z are

N0
z ¼ p0ab=2r0 ð10aÞ

N0
η ¼ Rp0 ð10bÞ

According to the Goldenveizer–Novozhilov thin shell theory
[17,18], the vibration equations of a submerged elliptical cylind-
rical shell are written as
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where P is the dynamic pressure of the fluid acting on the shell,
whereas Nz , Nη and Qz , Q η are the normal and transverse shear

Fig. 1. Geometry and coordinates of the elliptical cylindrical shell. (a) Coordinates, and (b) elliptical cylindrical shell.
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