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a b s t r a c t

This paper extends previous work concerning the determination of cross-section deformation modes in
thin-walled members with arbitrary polygonal cross-section, in the framework of Generalized Beam
Theory (Gonçalves et al., 2010 [1]). In particular, the paper addresses the so-called “natural shear
deformation modes” (i.e. the deformation modes that involve non-null membrane shear strains and
are independent of the cross-section discretization employed), which are relevant for capturing the
behaviour of thin-walled members with complex multi-cell cross-sections undergoing torsion and/or
distortion. The contributions of the paper are (i) the derivation of fundamental properties of the shear
modes, (ii) the proposal of an efficient mode extraction procedure and (iii) the development of analytical
results for several particular cases. In order to illustrate the application of the proposed mode extraction
procedure and demonstrate the validity of the derived properties, several cross-sections are analyzed,
including complex multi-cell tubes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Generalized Beam Theory (GBT), introduced by Schardt [2], is a
thin-walled beam theory that is capable of capturing cross-section
in-plane and out-of-plane (warping) deformation through the
inclusion of additional degrees-of-freedom, the so-called “cross-
section deformation modes”. GBT has been continuously devel-
oped and it has been widely demonstrated that it is capable of
providing very accurate and computationally efficient solutions for
a wide range of structural problems involving prismatic thin-
walled members (see, e.g., www.gbt.infofor a list of earlier pub-
lications and [3–6] for the description of recent developments
by Camotim and co-workers). In particular, the intrinsic modal
decomposition features of GBT provide in-depth information
concerning the mechanics of the problem addressed and make it
possible to derive analytical or semi-analytical formulas with a
wide range of application.

In a recent paper [1], a general approach for calculating the
deformation modes for arbitrary polygonal cross-sections was
proposed, focusing specifically on issues associated with the
enforcement of kinematic constraints, such as those resulting from
the imposition of null strain components (e.g., null membrane

shear strains) and the presence of external/internal restraints (e.g.,
cross-section symmetry simplifications, box diaphragms). These
constraints constitute a key aspect of most GBT formulations, as
they can effectively reduce the number of admissible deformation
modes (i.e., DOFs) without sacrificing accuracy. In fact, it is shown
in [1] that, in many cases, rather than employing the complete set
of deformation modes, it is more efficient to supplement the so-
called “conventional modes” with a few modes allowing for shear
and/or transverse extension deformation in relevant parts of the
cross-section – for instance, closed sections require cell shear flow
modes and wide flange sections require shear lag modes. Never-
theless, it should be mentioned that the enforcement of the
constraints is rather challenging for complex cross-sections, since
not all cross-section nodes/walls may undergo independent dis-
placements (precisely the motivation behind [1]).

This paper extends the previous work by exploring further the
properties of the so-called “natural shear deformation modes”, i.e.,
the deformation modes that (i) involve non-null membrane shear
strains, (ii) comply with the null membrane transverse extension
assumption (i.e., the walls are deemed inextensible in the cross-
section plane) and (iii) are independent of the GBT cross-section
discretization employed. As shown in [1], these modes are
particularly relevant for closed cross-sections undergoing torsion
and distortion. The new developments are the following: (i) the
fundamental properties of the natural shear modes are derived and
discussed (Section 3), (ii) analytical results for several cross-section
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types are provided (Section 4) and (iii) a computationally efficient
procedure for their extraction is proposed (Section 5). Moreover,
Section 6 presents a set of examples to illustrate the application of
the mode extraction procedure and demonstrate the validity of the
derived properties. In particular, representative cross-sections are
analyzed, including complex multi-cell tubes.

The notation presented in [1] is followed and a summary of the
main results of this paper is provided in Section 2. For simplicity, it
is assumed that no external/internal cross-section restraints exist,
since these can be efficiently enforced at the structural analysis
level, using appropriate constraint [7,8]. Nevertheless, the proce-
dures and results presented in this paper can handle quite
easily these restraints, using the concepts introduced in the previous
paper.

2. Summary of previous results

According to the usual GBT kinematic description, with the wall
mid-surface local axes (x, y, z) shown in Fig. 1(a), the displacement
vector U is given by

Uðx; y; zÞ ¼
Ux

Uy

Uz

2
64

3
75¼

uðx; yÞ�zw;xðx; yÞ
vðx; yÞ�zw;yðx; yÞ

wðx; yÞ

2
64

3
75; ð1Þ

where the commas indicate differentiation and u; v;w are the wall
mid-surface displacement components along x; y; z, respectively,
which are approximated through

uðx; yÞ ¼ ∑
D

k ¼ 1
ukðyÞϕk;xðxÞ; ð2Þ

vðx; yÞ ¼ ∑
D

k ¼ 1
vkðyÞϕkðxÞ; ð3Þ

wðx; yÞ ¼ ∑
D

k ¼ 1
wkðyÞϕkðxÞ; ð4Þ

where subscript k¼ 1;…;D indicates the cross-section deforma-
tion mode number, with shape functions ukðyÞ, vkðyÞ, wkðyÞ and
amplitude function along the beam length ϕkðxÞ.

The functions uk; vk;wk are obtained through the so-called
“cross-section analysis”, which comprises the following steps:

1. Cross-section discretization: Fig. 1(b) shows a typical discretiza-
tion, which involves (i) “natural” nodes, automatically located
at wall mid-line intersections and free edges, and (ii) “inter-
mediate” nodes, which are arbitrarily located between the
natural nodes and define the discretization level.

2. Calculation of an initial deformation mode set: The initial modes
are obtained on the basis of the nodal DOFs and two mode
subspaces are defined: (i) the “natural” subspace N , involving
natural node DOFs, with intermediate node DOFs constrained

out (thus these modes are independent of the cross-section
discretization), and (ii) the “local” subspace L, whose modes do
not involve natural node DOFs and, thus, depend on the cross-
section discretization.

3. Calculation of the final modes: The final mode set is obtained
through change of basis operations (sometimes called mode
orthogonalization operations), using generalized eigenvalue
problems. As discussed in [1], several possibilities exist.
The procedure for the conventional modes has been well-
established in [2].

Since L is completely dealt with in [1], it is not addressed in the
present paper and, consequently, no intermediate nodes are
considered. Moreover, as customary in most GBT formulations,
the initial deformation mode set is generated (i) using linear u
(warping) functions between nodes and (ii) calculating the in-
plane functions v;w by analyzing the cross-section as a plane
frame, subjected to imposed displacements.

Attention is now focused on the main results obtained in [1]
concerning the natural mode subspace N , which constitute the
foundations of the present work. It can be shown that N may be
subdivided according to

N ¼N εy a0
vþw [ N εy ¼ 0

vþw [ N u; ð5Þ

where the subscripts identify the displacement components
involved and the superscripts indicate whether the walls are
assumed inextensible along y or not (i.e., if εyy

M is null or not).
Furthermore,

N εy ¼ 0
vþw ¼N v [ N w; ð6Þ

where N v involves the independent v displacements of the walls
and Nw concerns w nodal displacements at outstands (wall free
ends). It turns out that Nv ¼ dimðN vÞ may be smaller than the
number of walls (nwalls), namely

NvþNn

v ¼ nwalls; ð7Þ

where Nn

v is the number of “dependent walls”. Furthermore, except
for cross-sections with a single wall or radiating walls, Nw may
be constrained out – this is the approach adopted in the present
paper.

The combination of N v and N u may be decomposed in the
following manner:

N v [ N u ¼N γ [ N Vlasov; ð8Þ

where N γ designates the natural shear mode space (with non-null
membrane shear strains and null membrane transverse exten-
sions1) and N Vlasov designates the so-called Vlasov mode space,

Fig. 1. (a) Arbitrary thin-walled member local coordinate systems. (b) Cross-section discretization

1 In [1], this mode space is designated as N εy ¼ 0
γa0 , but the notation is simplified

in the present paper.
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