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a b s t r a c t

Elastic stability of shell structures under certain loading conditions is characterized by a dramatically
unstable postbuckling behavior. The presence of simultaneous ‘competing’ buckling modes (correspond-
ing to the same critical buckling load) is understood to be largely responsible for such behavior. In this
paper, within the framework of linear bifurcation eigenvalue analysis and Donnell shallow shell theory,
the presence of simultaneous buckling modes in axially compressed isotropic cones is determined using
the semi-analytical method of Galerkin. The results are presented in the plane of the dimensionless
reciprocal meridional and circumferential buckling half wavelengths, and are compared with the locus of
simultaneous buckling modes of axially compressed cylinders, described by the so-called Koiter circle.
By using an optimizing procedure, it is shown that the cluster of simultaneous buckling modes in cones
is well described by the Koiter circle of an equivalent cylinder with appropriate length and radius. Such
optimizing values of length and radius allow us to gain some insight into the simplifying treatment of
the buckling of cones through the concept of equivalent cylinder.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Buckling is one of the most important failure modes in thin-
walled shell structures submitted to compressive stresses. Indeed
a large amount of research work has been carried out in the past
decades to determine the buckling strength of shell structures
[1,2]. The simple geometry of cylinders has received a much larger
attention in the literature in comparison to other shell shapes [3–6].

It is well known from experimental and theoretical studies that
in shell structures the actual failure load might be significantly
lower than that obtained from a linear bifurcation eigenvalue
analysis, even if the material fails in its elastic range [6]. One of the
reasons for such a reduction is attributed to the presence of local
or global geometric imperfections which produce a deviation from
the nominal geometry of the shell. The early fundamental works
by von Kármán and Tsien [7], Donnell and Wan [8] and Koiter [9]
demonstrated how initial geometric imperfections can be a
primary source of variation between analytical predictions and
experimental results. It is known that the membrane component
of strain energy is the most important factor in imperfection
sensitivity of the shell [10]. Axial compression is the loading
condition allowing the shell to develop a high membrane

component of the total strain energy, which will result in higher
imperfection sensitivity. Thus, this loading condition is largely
investigated in cylindrical shells [11–15]. The high imperfection
sensitivity is often explained by the presence of simultaneous –

interacting on each other – buckling modes corresponding to the
same critical buckling load.

In addition to cylinder, other shells of revolution such as cone
and sphere can be brought to a high membrane stress state. This
membrane stress can be achieved in cylinders and cones through
axial compression and internal pressure and for spheres through
pressurization. Buckling of axially compressed conical shells has
received relatively much less attention in the literature. There is
however similarities in the buckling behavior of conical shells with
respect to that of cylinders. For instance, former investigations
proved that conical shells are imperfection sensitive when
exposed to axial compression (Lackman and Penzien [16]; Spag-
noli [17]; Chryssanthopoulos et al. [18]). In addition, the analytical
expression of the buckling load of conical shells under axial
compression is correlated to that of cylindrical counterparts. Seide
[19] presented a simple closed form solution for buckling of
axisymmetric conical shells as

Pcone ¼ 2πEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�ν2Þ

p cos 2β¼ Pcyl cos
2β ð1Þ

where E and ν are the Young modulus and Poisson ratio of the
material, respectively, t is the thickness of the shell and β is the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/tws

Thin-Walled Structures

http://dx.doi.org/10.1016/j.tws.2014.07.013
0263-8231/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: shakouri@ae.sharif.edu (M. Shakouri),

spagnoli@unipr.it (A. Spagnoli), mak@sharif.edu (M.A. Kouchakzadeh).

Thin-Walled Structures 84 (2014) 360–368

www.sciencedirect.com/science/journal/02638231
www.elsevier.com/locate/tws
http://dx.doi.org/10.1016/j.tws.2014.07.013
http://dx.doi.org/10.1016/j.tws.2014.07.013
http://dx.doi.org/10.1016/j.tws.2014.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2014.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2014.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2014.07.013&domain=pdf
mailto:shakouri@ae.sharif.edu
mailto:spagnoli@unipr.it
mailto:mak@sharif.edu
http://dx.doi.org/10.1016/j.tws.2014.07.013


semi-vertex (tapering) angle of the cone as shown in Fig.1. This
expression is based on the classical membrane prebuckling state
assumption and shallow shell theory of Donnell.

In the design against buckling of conical shells, it is a common
practice to treat the cone as an equivalent cylinder. This so-called
equivalent cylinder concept simply originates from the expression
of the membrane stress related to the critical buckling load at a
given location defined by parallel radius r, namely

σx;cr ¼
Pcone

2πrt cos β
¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1�ν2Þ
p t cos β

r
¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1�ν2Þ
p t

re
ð2Þ

where re is the radius of curvature of the cone at the given
location. It is evident from Eq. (2) that the buckling membrane
stress along the meridian of the cone can be regarded as that of an
equivalent cylinder with equal thickness having the radius equal to
the corresponding radius of curvature of the cone. In other words,
the radius re of the equivalent cylinder is such that the critical
buckling resistance of the equivalent cylinder is equal to that of
the conical shell [20].

The formal similarity of the expressions for the buckling
strength of cylinders and cones has suggested, at least as long as
the tapering angle of the cone is not too high (say, less than 651) –
otherwise a snap-through instability type might be dominant [20],
to extend such a similarity to cones' bifurcation behavior in
general as well as to their imperfection sensitivity under axial
compression and other loading conditions. This leads to the
definition, for both buckling strength and imperfection knock-
down calculations, of specific values of the radius re as well as of
the length le of the equivalent cylinder as a function of the type of
load acting on the conical shell [20]. The equivalent cylindrical
concept was confirmed by many researchers such as Esslinger and
Ciprian [21], Pariatmono and Chryssanthopoulos [22] and Schmidt
and Krysik [23] for elastic and also Blachut [24] for elastic–plastic
behavior of conical shells under axial compression.

All above-mentioned attempts are limited in finding length and
radius of the equivalent cylinder so as to obtain a matching
between the critical buckling stress of the equivalent cylinder
and that of the cone at a certain location, but they do not contain
discussions about simultaneous buckling modes of the cone and of
the corresponding equivalent cylinder. As a matter of fact, it might
be conjectured that if an agreement between cone and equivalent
cylinder can be found not only in terms of critical stress but also in
terms of simultaneous mode distribution, the imperfection sensi-
tivity of the cone can be described by that related to the equivalent
cylinder.

An attempt to explore the presence of simultaneous buckling
modes in cones has been presented by Poggi [25]. Pariatmono
and Chryssanthopoulos [22] showed that at a certain aspect ratio
of an axially compressed conical shell, different buckling modes
correspond to the same value of critical stress and Spagnoli [26]

used finite element method to show that the locus of these
modes is described by an ellipse whose aspect ratio is dependent
on the tapering angle of the cone.

In this paper, within the framework of linear bifurcation
eigenvalue analysis and Donnell shallow shell theory, the presence
of simultaneous buckling modes in axially compressed cones is
determined using the semi-analytical method of Galerkin. The
results are presented in the plane of the dimensionless meridional
and circumferential buckling half wavelengths, and are compared
with the locus of simultaneous buckling modes of axially com-
pressed cylinders, described by the so-called Koiter circle. By using
an optimizing procedure, it is shown that the cluster of simulta-
neous buckling modes in cones is well described by the Koiter
circle of an equivalent cylinder with appropriate length le and
radius re. Such optimizing values of length and radius allow us to
gain some insight into the simplifying treatment of the buckling of
cones through the concept of equivalent cylinder.

2. Geometry and definitions

Consider a conical shell with the (x, θ, z) coordinate system
shown in Fig. 1, where x is the coordinate along the cone
generator, θ is the circumferential coordinate and z is the coordi-
nate normal to the cone surface as shown in Fig. 1. The radius at
the small and large end is r1 and r2, respectively, β is the tapering
angle of cone and L is the slant length of the cone along the
generator. The thickness of the cone is t and r0 represents its mean
radius.

3. Doubly periodic buckling modes and the Koiter circle of
cylindrical shells

A brief survey on Koiter circle in cylindrical shells under
uniform axial compression is presented in this section. A detailed
discussion can be found in Section 14.3 of Calladine [27] and
Spagnoli [26]. The governing stability equation of Donnell for
axially compressed cylinders, neglecting in-plane deflections, can
be written as follows [28]

D∇4ð∇4wÞþ1�ν2

r2
Cw;xxxxþ P

2πr
∇4w;xx ¼ 0 ð3Þ

where w is the incremental out-of-plane displacement with
respect to the initial (prebuckling) state, x is the coordinate along
the cylinder length, θ is the circumferential coordinate, the comma
subscript corresponds to partial differentiation against the variable
indicated. The differential operator is

∇4ð Þ ¼ ð Þ;xxxxþ
2
r2
ð Þ;xxθθþ

1
r4
ð Þ;θθθθ ð4Þ

Fig. 1. Geometry of the cone.
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