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a b s t r a c t

This work presents a new formulation of the geometrically exact thin walled composite beam theory.
The formulation assumes that the beam can undergo arbitrary kinematical changes while the strains
remain small, thus compatibilizing the hypotheses of the strain measure and the constitutive law of the
composite material. A key point of the formulation is the development of a pure small strain measure
written solely in terms of scalar products of position and director vectors; the latter is accomplished
through the obtention of a generalized small strain vector by decomposition of the deformation gradient.
The resulting small strain measure is objective under rigid body motion. The finite element implemen-
tation of the proposed formulation is simpler than the finite strain theory implementation previously
developed by the authors. Numerical experiments show that the present formulation is very accurate
and computationally more efficient than the finite strain formulation, thus it is more convenient for
most practical applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite beams for modeling structural compo-
nents is a common practice; the behavior of slender parts of
modern machines such as wind turbines, satellites, cars, etc. is
often predicted using the thin-walled composite beam (TWCB)
approach. Good modeling practices normally imply the use of
geometrically nonlinear TWCB theories, which are capable of
describing not only large kinematical changes in the beam con-
figuration but also nonlinear interactions between different com-
ponents of mechanisms or multibody systems.

The thin-walled beam formulation is due to Vlasov [1]; remark-
ably, it has survived 50 years without drastic changes. One of the
principal extensions of the theory was the inclusion of the mechanics
of composite materials; several approaches that deal with the elastic
behavior of TWCBs can be found in the literature and they are
generally derived from Vlasov's thin walled beam theory. Although
most works introduce novel aspects in their formulations, very often
their hypotheses lead to geometrical or constitutive inconsistencies,
or both.

The vast majority of the thin-walled beam formulations that
can be found in the literature rely in the assumption of a dis-
placement field which is introduced into a Green strain expression

to obtain generalized strain measures in terms of the kinematic
variables and its derivatives. Commonly the kinematic variables
are taken as three displacements and three rotations, sometimes
also a warping degree of freedom is used.

At least one of the following four inconsistencies can be found
in almost all the works regarding TWCB, i.e. (i) the displacements
field is said to describe moderate or large kinematical changes
while the nonvectorial nature of the rotation variables is disre-
garded, (ii) a linear or second order nonlinear displacement field is
assumed, but then it is introduced into an arbitrary large strain
expression, (iii) some terms of the Green strain regarded as
nonlinear strain measures are eliminated causing the loss of the
objectivity of the resulting “linear” strain measures and (iv) the
kinematic description of the formulation admits large strains
while the constitutive law is only valid for small strains.

Taking, for instance, the developments by Librescu [2], it can
be found that they suffer from inconsistencies (i), (ii) and (iv).
Also, the works by Pi et al. [3–5] suffer from inconsistencies (i) and
(iii). Analyzing their works [3,4] it can be seen that the rotation
matrix is said to be second order accurate while its components
are treated as vectors, thus ignoring the non-commutativity of
rotations. Also, non-pure strain (higher order) terms of the Green
strain measure are eliminated without testing the objectivity of
the resulting strain measures. In [5] an exact rotation matrix is
used, but again the elimination of non-pure strain terms cast
doubt on the objectivity of the formulation; also, the rotation
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matrix is said to belong to the Special Orthogonal Group (SO3)
while it is linearized as it belonged to a vector space. The theories
developed by Cortínez, Piován and Machado in works [6–10]
for the study of the dynamic stability, vibration, buckling and
postbuckling of both open and cross section TWCBs suffer from
inconsistencies (i), (ii) and (iv).

Regarding geometrically exact TWCB formulations, Saravia
et al. [11,12] presented Eulerian, Total Lagrangian and Updated
Lagrangian formulations using a parameterization in terms of
director vectors. These formulations can describe kinematical
and strain changes of arbitrary magnitude consistently; however,
the constitutive law of composite laminates is only valid for small
strains. A similar problem affects most of the geometrically exact
formulations [13–16] developed for isotropic beams.

The mentioned works are only a few of many that present the
mentioned inconsistencies. Although it can be asked if the errors
that arise from these issues are actually of great influence in
practical situations, the uncertainty about the limit of application
of these hypotheses strongly motivates the development of a
consistent approach in which a validity assessment of the theory
is not needed. It is true that due to the accuracy of the modern
Variational Asymptotic Methods, the use of the TWCB approach
shall probably be reduced in the future. However, a vast amount of
efforts are being done by researchers to improve the theory, and
thus it is worth to develop a consistent large deformation–small
strain formulation for thin walled composite thin-beams.

In this context, this paper presents the derivation of mathe-
matical aspects of the finite deformation–small strain TWCB
formulation. In the present approach the kinematic changes
of the beam are assumed to be arbitrary, thus allowing finite
rotations. The deformation gradient is written in terms of the
director field; after obtaining its extended polar decomposition
[17,18], a vectorial pure small strain measure is found. Finally,
discrete versions of the small strain measures are found in terms
of the current director and displacement fields and its derivatives;
the obtained relations are remarkably simple and do not involve
derivatives of the reference triads. The discrete generalized strain
measures are proved to be objective under rigid body motions.
The formulation is implemented in a finite element formulation;
numerical results show that the proposed approach has excellent
accuracy compared to the finite strain implementation previously
developed by the author.

2. Kinematics

The kinematic description of the beam is extracted from the
relations between two states of a beam, an undeformed reference
state (denoted as B0) and a deformed state (denoted as B), as it
is shown in Fig. 1. Being ai a spatial frame of reference, two

orthonormal frames are defined: a reference frame Ei and a
current frame ei.

The displacement of a point in the deformed beam measured
with respect to the undeformed reference state can be expressed
in the global coordinate system ai in terms of a vector u¼
ðu1;u2;u3Þ.

The current frameei is a function of a running length coordinate
along the reference line of the beam, denoted as x, and is fixed to
the beam cross-section. For convenience, it is chosen the reference
curve C to be the locus of cross-sectional inertia centroids. The
origin of ei is located on the reference line of the beam and is
called pole. The cross-section of the beam is arbitrary and initially
normal to the reference line.

The relations between the orthonormal frames are given by the
linear transformations:

Ei ¼Λ0ðxÞai; ei ¼ΛðxÞEi; ð1Þ
where Λ0ðxÞ andΛðxÞ are two-point tensor fields ASOð3Þ; the special
orthogonal (Lie) group. Thus, it is satisfied that ΛT

0Λ0 ¼ I; ΛTΛ¼ I.
It will be considered that the beam element is straight, so Λ0 ¼ I.

Recalling the relations (1), the position vectors of a point in
the undeformed and deformed configurations respectively can be
expressed as

Xðs;X2;X3Þ ¼ X0ðxÞþ ∑
3

i ¼ 2
XiEi; xðs;X2;X3; tÞ ¼ x0ðs; tÞþ ∑

3

i ¼ 2
Xiei:

ð2Þ
where in both equations the first term stands for the position of
the pole and the second term stands for the position of a point in
the cross section relative to the pole. Note that x is the running
length coordinate and X2 and X3 are cross section coordinates.
At this point we note that since the present formulation is thought
to be used for modeling high aspect ratio composite beams, the
warping displacement is not included. As it is widely known, for
such type of beams the warping effect is negligible [19].

Also, it is possible to express the displacement field as

uðs;X2;X3; tÞ ¼ x�X ¼ u0ðs; tÞþðΛ�IÞ∑
3

2
XiEi; ð3Þ

where u0 represents the displacement of the kinematic center of
reduction, i.e. the pole. The nonlinear manifold of 3D rotation
transformations ΛðθÞ (belonging to the special orthogonal Lie
Group SO(3)) is described mathematically via the exponential
map [13]. The rotation tensor in component form yields

Λ¼ ∑
3

i;j ¼ 1
ΛijEi � Ej; ð4Þ

where the components Λij of the rotation tensor can be obtained
in the following form:

Λij ¼ Ei UΛEj ¼ Ei Uej ð5Þ

then it is possible to express the rotation tensor as

Λ¼ ∑
3

i;j ¼ 1
ðEi UejÞEi � Ej: ð6Þ

Now, using the tensor product property ða � bÞc¼ ðcUbÞa, it is
obtained

Λ¼ ∑
3

i;j ¼ 1
ðEi � EiÞej � Ej ¼ ∑

3

j ¼ 1
Iej � Ej; ð7Þ

Finally, with summation from 1 to 3 implicitly assumed, the
following expression for the rotation tensor can be obtained:

Λ¼ ej � Ej; ð8ÞFig. 1. 3D beam kinematics.
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