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a b s t r a c t

A geometrically nonlinear beam model suitable for describing complex 3D effects due to non-uniform
warpings including non-standard in-plane distortions of the cross-section is presented and applied to
the buckling analysis of beams. Each section is endowed with a corotational frame where statics and
kinematics are described using a refined linear elastic model which exploits a semi-analytical solution of
the Cauchy continuum problem based on a FEM discretization of the cross-section. The stress field in this
way is fully 3D, allowing both the exact recovery of the standard Saint Venant solution and the
consideration of some additional relevant strain modes of the cross-section that are evaluated in a
simple and effective way. Numerical results are presented and compared with 3D shell reference
solutions obtained by using the commercial code ABAQUS.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their wide use in engineering practice, linear and
nonlinear analyses of beam-like members represent attractive
topics for researchers who aim to improve both the accuracy of
the continuum models and the efficiency of the FEM solution
procedures. Over the last few decades, hundreds of papers
regarding beam models for linear and nonlinear analyses have
been published (see [1,2] for a detailed overview of the most
important proposals). Significant contributions regarding the geo-
metric nonlinear analysis of such structures have focused on the
determination of the elastic buckling load [3–5], the initial post-
buckling behavior [6] and of the whole equilibrium paths [7–12] of
single beams and frames.

In particular the analysis of 3D beams and frames in composite
materials or thin-walled profiles requires appropriate tools, cap-
able of accurately predicting complex 3D behaviors such as
interlaminar stresses, section distortions and non-standard cou-
pling effects [13]. Solid or shell based analyses could be very
expensive in terms of computing resources for real scale problems,
especially when the nonlinear behavior is considered, so the
recourse to accurate 1D models capable of reproducing the
essential aspects of the original solution appears to be preferable.
Standard beam models which adopt a rough description of the

cross section motion are inadequate for these purposes, lacking in
an accurate description of complex in-plane deformation of the
cross section or fully 3D states of stress.

To fill this gap, in the last few decades, the researchers'
attention has been devoted to formulate refined or high order
beam theories based on a decomposition of the 3D elasticity
problem into a one-dimensional part defined along the beam axis
and a cross-section analysis suitable for the enrichment of the
beam kinematics. This is the case of the generalized beam theory or
GBT initially proposed by Schardt [14] for the analysis of thin
walled isotropic beams used in civil engineering applications. The
theory has been notably improved in the last few years principally
by Camotim and coauthors [12,15–17], while other recent con-
tributions can be found in [18,19]. The fundamental idea of the
GBT is that of considering the beam as an “assembly” of thin
plates. Introducing other suitable simplified assumptions, the cross
section analysis is then reduced to the section middle line (see also
[20]). Another important contribution is the variational-
asymptotic method developed essentially by Hodges and cow-
orkers [21,22,7] in which the same goal is reached by selecting the
significant terms in the elastic formulation of a 3D beam by means
of an asymptotic section analysis. Other relevant contributions to
the modeling of the warping effects, even if limited to the linear
elastic case, can be found in [23–26].

In this paper, a new model for beams subjected to variable
warpings and section distortions, undergoing large displacements
and rotations, but small strains is obtained through the Implicit
Corotational Method (ICM) [27]. The ICM reuses the corotational
description at the continuum level by introducing a corotational
reference system for each cross-section. In this system, following a
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mixed approach, the linear stress tensor is shown to be a good
approximation of the Biot nonlinear one, while a quadratic approx-
imation of the strain is easily obtained from the symmetric and the
skew-symmetric parts of the displacement gradient of a parent
linear solution. The two fields so defined are introduced in the
Hellinger–Reissner functional to describe the beam behavior in
terms of generalized static and kinematic quantities only, while
change of observer algebra is used to complete the framework. The
so generated nonlinear model is objective with respect to the mean
rigid section motion, while its capability in describing complex
phenomena depends on the parent linear model considered. Read-
ers are referred to [28] for its first application to the Saint-Venant
(SV) and the Kirchhoff solutions for beams and plates, while in [29]
an extension to homogeneous and isotropic beams subjected to
variable shear/torsion warping deformations is presented.

The capability of the ICM to describe complex 3D behavior
depends largely on the linear solution considered. Existing linear
formulations for beams only partially account for the richness of
3D continuum, introducing appropriate hypotheses for the statics
and the kinematics of the body when formulating the one-
dimensional model. The linear beam model in [30,31], on the
contrary, is based on the solution of the full 3D elasticity problem
extending the approach initially proposed by Giavotto et al. [32,33]
for the analysis of helicopter rotor blades. The basic idea is that of
building a coherent approximation of the beam stresses and
displacements starting from a semi-analytical solution of the
Cauchy continuum problem for beam-like bodies under the usual
Saint Venant (SV) loading conditions also for beams of composite
section. We define, for a 3D beam section, a system of homo-
geneous differential equilibrium equations in terms of cross
section FE parameters which are solved by means of an eigenvalue
problem. In particular the system matrix is characterized by a
group of eigenvectors associated with null eigenvalues that define
a polynomial solution along the beam axis and a group of non-null
eigenvalues which represent the part of the solution associated
with tip end effects and with self-balanced stresses exponentially
decaying moving away from the bases. The polynomial part
(central solution) includes the beam rigid body motion and the
generalization of SV solution to generic materials (see also [34] for
further details). The other modes consist in out of plane warpings
as well as section distortion modes.

On the basis of the information obtained by means of the
previously described cross section analysis, the generalized beam
displacement field is approximated in terms of a rigid section motion
and some other relevant strain modes (generalized warpings)
independently amplified along the beam axial direction; the stress
field coherently enriches that provided by the generalized SV
solution through the contributions due to all the generalized warping
effects considered. Differently from other proposals, the model
includes in the analysis a set of strain modes of the cross-section in
a coherent way thereby resulting potentially capable of accounting
for the full 3D effects of the solution. It represents an alternative
framework to GBT being virtually capable of accurately accounting
for any kind of beam section (compact or thin-walled) and material.

Attention will be focused on the capability of the generalized
warpings, obtained from the section analysis, together with the
adoption of the ICM strategy, to accurately describe the bucking
solution in terms of both deformation and stress fields. The
analysis is carried out by considering essentially isotropic materi-
als for which it is easy to separate the in plane and out of plane
section modes and then to simply treat more complex boundary
conditions. The model is, however, general and well suited also for
the analysis of composites as a final example will show.

The finite element formulation is obtained from the Hellinger–
Reissner functional introducing a suitable interpolation of both the
stress and displacement fields. By means of a block elimination of

the variables that do not require inter-element continuity, the
element, at the global level, exposes only a reduced number of
kinematical parameters and uses a pseudo-compatible format to
perform the analysis [35,36,29]. It will be shown that very accurate
results can be obtained considering few generalized warpings of
the cross section also for complex buckling modes containing a
localization of displacements. Numerical test results regarding
both the buckling loads and modes will be compared with those
furnished by shell analyses using the ABAQUS code.

2. The beam model

In this section the nonlinear beam model will be derived
starting from a suitable parent linear formulation according to
the ICM framework (see [27,29]). Some basic concepts about the
section analysis and the linear beam model will be presented to
introduce the notation. Interested readers are referred to [30,34]
for a complete discussion about both these topics.

2.1. The use of the semi-analytic approach for the cross section
analysis

Let us consider the beam as a Cauchy body referred to a fixed
Cartesian frame with origin O and basis vectors fe1; e2; e3g. Each
material reference point is defined by a position vector X ¼ se1þx,
s� x1 being a one-dimensional abscissa along the axis line or
support of length ℓwhile x¼ x2e2þx3e3 lies on the cross section or
fiber Ω½s�.

Adopting a Voigt-like notation and omitting the dependence of
the quantities when clear, the compatibility relationship between
linear strains collected in ε½s; x� ¼ fε11; γ12; γ13; ε22; ε33; γ23g and
displacements υ½s; x� ¼ fv1; v2; v3g, becomes

ε¼DυþSυ;s; ð1Þ
where operators S and D are defined as follows:

S ¼

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

2
666666664

3
777777775
; D¼

0 0 0
∂
∂x2

0 0
∂
∂x3

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

2
66666666664

3
77777777775

A proper FEM interpolation on the cross-section is introduced so
to express υ in the form

υ½s; x� ¼Nv½x�q½s�; ð2Þ
where Nv is the shape function matrix and q½s� is the vector
collecting all the nq discrete parameters of the cross-section.

Strains in Eq. (1) can be evaluated as

ε¼ Lϵ½x�ψ ½s�; ð3Þ
where

Lϵ½x� ¼ ½SNv DNv�; ψ ½s� ¼
q;s
q

" #
ð4Þ

and, from now on, a comma denotes derivative.
Letting σ½s; x� ¼ fσ11;σ12;σ13;σ22;σ33;σ23g be the vector collect-

ing the stress components, we assume a linear constitutive law
expressed as

σ ¼ C½x�ε; ð5Þ
where the constitutive matrix C is assumed constant with s.

Substituting Eqs. (2), (3) and (5), in the virtual work equation or
in the potential energy functional (see [30,34]) the equilibrium
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