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a b s t r a c t

A beam–column element formulation and solution procedure for nonlinear inelastic analysis of planar
steel frame structures under dynamic loadings is presented. The spread of plasticity is considered by
tracing the uniaxial stress–strain relationship of each fiber on the cross section of sub-elements.
An elastic perfectly-plastic material model with linear strain hardening is employed for deriving a
nonlinear elemental stiffness matrix, which directly takes into account geometric nonlinearity and
gradual yielding. A solution procedure based on the combination of the Hilber–Hughes–Taylor method
and the Newton–Raphson method is proposed for solving nonlinear equations of motion. The nonlinear
inelastic time-history responses predicted by the proposed program compare well with those given by
the commercial finite element package known as ABAQUS. Shaking table tests of a two-story steel frame
were carried out with an aim to clarify the inelastic behavior of the frame subjected to earthquakes
generated by the proposed program. A more practical analysis method for seismic design can be
developed by comparing it with the presented frames for verification.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Steel frame structures are usually designed for industrial and
commercial buildings in earthquake-prone areas because of their
ductility. In order to predict the exact behavior of steel frames,
especially in severe loading conditions, advanced analysis meth-
ods are employed. An advanced analysis must simultaneously
include all key factors of steel frames such as geometric nonlinea-
rities (P—large delta and P—small delta effects), inelastic material,
semi-rigid connections, imperfection geometry, residual stress,
etc. There are two methods for advanced analysis of steel frame
structures: (i) the “plastic-nodes” or “plastic-hinges” approach
(concentrated plasticity), (ii) the plastic-zone approach (distribu-
ted plasticity). The basic difference between these two approaches
lies in the manner that yielding within members is modeled.
In the former case, assuming that plastic hinges form at two ends
or monitored points of members while the yielding is distributed
throughout the whole length and depth of members with the
plastic-zone approach, the plastic-zone approach is a more exact
model to predict the behavior of frame structures. However, it

consumes many computer sources and computational time. Nowa-
days, with the ongoing development of computer sciences, the
personal computer has developed a great capacity for restoring
data and performing computations. Therefore, computation time
is not a great obstacle for the nonlinear finite element analysis,
so the plastic-zone method is more and more feasible for practical
office design.

Research is generally lacking in regard to second-order dis-
tributed plasticity analysis of steel frame structures under earth-
quake excitations. A fair amount of studies concentrate on
obtaining the optimal accurate finite elements so that static
problems are employed. There are three finite element types that
can be developed for capturing the gradual yielding of steel
frames. The accuracy and complexity levels are respectively listed
as follows: (i) solid elements, (ii) shell elements and (iii) beam–

column elements. In order to trace local buckling and warping
effects in steel profiles, there are a few ABAQUS simulation studies
using shell elements [1–3], recently, Rigobello et al. [4] present a
solid-like finite element. Although finite element solutions using
shell-type [1–3] and solid-type [4] elements are more accurate
than those of beam-type elements, it is complicated and expensive
in terms of computer sources and computational time for per-
forming multi-story frames. Therefore, the spread-of-plasticity
analysis using beam-type elements is more favorable and common
[5–15]. Foley and Vinnakota [7–9] developed a nonlinear finite
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element program for the second-order distributed plasticity ana-
lysis of multi-storey planar steel frames under static loadings. In
order to improve computational performance, Foley [11] proposed
parallel processing and vectorization, in which a main structure is
separated into several sub-structures for reducing unknowns of
system equations. Alemdar and White [12] presented different
procedures based on displacement, flexibility, and mixed beam–

column formulations using a total Lagrangian corotational
approach for the distributed plasticity analysis of frame structures.

In recent years, Chiorean [13] derived a complicated beam–

column method for the second-order inelastic analysis of space
steel frames with semi-rigid connections. The advantage of this
study is that it is able to trace the spread of plasticity along the
member length by using only one beam–column element per
frame member in analytical modeling. However, it seems that the
shape parameters a and n of the Ramberg–Osgood model and α
and p of the proposed modified Albermani model for the force–
strain relationship of the cross-section, which consider the effect
of the gradual yielding behavior of members, need to be investi-
gated more adequately. Thai and Kim [14,15] presented a second-
order spread-of-plasticity analysis method for steel frames using
only one beam–column element per frame member by employing
stability functions, in which the elemental axial stiffness and
bending stiffness are sensitive to the number of integration points
due to the important influence of weight factors (i.e. if plastic
hinges only form at two ends of the member, using two integra-
tion points gives a smaller stiffness than using ten integration
points for a member due to the weight factors being distributed
more uniformly for ten monitoring points). Therefore, choosing
the number of integration points acts on the final response of
structures. Also in this way, the effect of the shift of the elastic core
during the yielding processing is difficult to consider exactly.
Such proposed formulations can underestimate the load-carrying
capacity and performance of frame structures. To obtain a high
accuracy, it is necessary that members should be completely
divided into a lot of sub-elements along their length. After that,
stiffness matrices of sub-elements are assembled to form a
stiffness matrix at the member level.

In the context of this study, the distributed plasticity method
developed by Foley and Vinnakota [7–9,11] for nonlinear static
analysis is upgraded in terms of its applications for nonlinear
dynamic analysis. A numerical procedure is proposed to perform
the second-order inelastic time-history analysis of planar steel
frames subjected to dynamic loadings and earthquake excitations.
Frame members are divided into a lot of sub-elements along the
member length and each sub-element cross-section is divided into
a lot of fibers to trace the progress of the spread of plasticity and
assign initial residual stress distributions for steel sections. An
elastic perfectly plastic material model with strain hardening is
used. The tangent stiffness matrix of the nonlinear beam–column
element directly taken into account for the effects of geometric
nonlinearity and gradual yielding of the material is derived using
the Rayleigh–Ritz method and the principle of stationary potential
energy. The moving of the strain-hardening and elastic neutral
axis, which, due to yielding of some fibers in the cross-section,
is directly considered in the tangent stiffness matrix during the
analysis process. A computer program using the Hilber–Hughes–
Taylor (HHT) method [16] is developed for solving the governing
differential equations of equilibrium because its numerical dis-
sipation is necessary to obtain convergent solutions with regard to
some complicated nonlinear problems. Shaking table tests for a
one-bay two-story steel frame carried out the aim to clarify the
inelastic behavior of steel frames subjected to earthquake excita-
tions and its results are used to verify the validity of the second-
order inelastic dynamic analysis techniques of the proposed
program. The results of nonlinear inelastic responses are also

compared with those of ABAQUS to verify the accuracy of the
proposed numerical procedure.

2. Nonlinear beam–column element formulation

In order to capture the distributed plasticity, a beam–column
member is divided into n elements along the member length as
illustrated in Fig. 1a, each element is divided into small fibers
within its cross section as illustrated in Fig. 1b, and each fiber is
represented by its material properties, geometric characteristic,
area Ai, and its coordinate location corresponding to its centroid
yj; zj
� �

. By this way, residual stress is directly considered in
assigning an initial stress value for each fiber. The P-delta effects
are included by the use of several sub-elements per member
through continuous updating of the element stiffness matrix and
nodal coordinates.

In the formulation of the nonlinear finite element, the follow-
ing assumptions are made: all elements are initially straight and
prismatic; plane sections remain plane after deformation; lateral–
torsional buckling is prevented; local buckling of cross-sections is
not considered; residual stress is uniformly distributed along the
member length; the shear effect on the yielding of materials is
ignored; the Bauchinger effect is neglected since the isotropic
hardening model is used for steel material. The Rayleigh–Ritz
method and the principle of minimum potential energy are used
to derive the stiffness matrix of a nonlinear beam–column element
under loads as illustrated in Fig. 2. An elastic plastic stress–strain
relationship with linearly strain hardening presented by Toma and
Chen [17] is adopted as shown in Fig. 3. Strain hardening starts at
the strain of εsh ¼ 10εy, and its modulus Esh is assumed to be equal
to 2% of the elastic modulus E. The total internal strain energy of a
nonlinear elastic–plastic beam–column element considering the
effect of strain hardening can be given as follows:
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since

σ ¼ Eε for elastic fibers
σ ¼ Eεy ¼ σy for yielding fibers
σ ¼ EεyþEsh ε�εshð Þ ¼ σsh for hardening fibers

where ε is the normal strain at any fiber within a cross section, σ is
the normal stress at any fiber within a cross section, V is the
volume of fibers corresponding to their states within a cross
section of an element, and subscripts e; p yð Þ; sh stand for elastic,
plastic, and strain hardening states of fiber elements. Fig. 1b
illustrates a cross-section discretization with fiber states, in which
dCGe and dCGsh are the shift of the center of the initial neutral axis
and the distance from the initial neutral axis to the strain-
hardening neutral axis created by fibers in the strain-hardening
regime, respectively.

Using Hook’s law for elastic fibers and replacing the integra-
tions over the volume of the element in Eq. (1) by integrating
along the length and throughout the cross section of the element,
Eq. (1) is expressed as
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