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a b s t r a c t

A recently developed nonlinear analytical model for axially loaded thin-walled stringer-stiffened plates
based on variational principles is extended to include local buckling of the main plate. Interaction
between the weakly stable global buckling mode and the strongly stable local buckling mode is
highlighted. Highly unstable post-buckling behaviour and a progressively changing wavelength in the
local buckling mode profile are observed under increasing compressive deformation. The analytical
model is compared against both physical experiments from the literature and finite element analysis
conducted in the commercial code ABAQUS; excellent agreement is found both in terms of the mechanical
response and the predicted deflections.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled stringer-stiffened plates under axial compression
are well known to be vulnerable to buckling where local and global
modes interact nonlinearly [1–4]. However, since stiffened plates
are highly mass-efficient structural components, their application
is ubiquitous in long-span bridge decks [5], ships and offshore
structures [6], and aerospace structures [7,8]. Hence, understanding
the behaviour of these components represents a structural problem
of enormous practical significance [9–11]. Other significant structural
components such as sandwich struts [12], built-up columns [13],
corrugated plates [14] and other thin-walled components [15–18] are
also well-known to suffer from the instabilities arising from the
interaction of global and local buckling modes.

In the authors' recent work [19], the aforementioned problemwas
studied using an analytical approach by considering that interactive
buckling was wholly confined to the stringer (or stiffener) only.
So‐called “cellular buckling” [20,21,18,22] or “snaking” [23–25] was
captured, where snap-backs in the response, showing sequential
destabilization and restabilization and a progressive spreading of the
initial localized buckling mode, were revealed. The results showed
reasonably good comparisons with a finite element (FE) model
formulated in the commercial code ABAQUS [26]. The current work
extends the previous model such that the interaction between global
Euler buckling and the local buckling of the main plate, as well as the
stiffener, is accounted. A system of nonlinear ordinary differential

equations subject to integral constraints is derived using variational
principles and is subsequently solved using the numerical continua-
tion package AUTO-07P [27]. The relative rigidity of the main plate–
stiffener joint is adjusted by means of a rotational spring, increasing
the stiffness of which results in the erosion of the snap-backs that
signify cellular buckling. However, the changing local buckling
wavelength is still observed, although the effect is not quite so
marked as compared with the case where the joint is assumed to be
pinned [19]. A finite element model is also developed using the
commercial code ABAQUS for validation purposes. Moreover, given that
local buckling of the main plate is included alongside the buckling of
the stiffener in the current model, which is often observed in
experiments, the present results are also compared with a couple
of physical test results from the literature [2]. The comparisons turn
out to be excellent both in terms of the mechanical response and the
physical post-buckling profiles.

2. Analytical model

Consider a thin-walled simply supported plated panel that has
uniformly spaced stiffeners above and below the main plate, as
shown in Fig. 1, with panel length L and the spacing between the
stiffeners being b. It is made from a linear elastic, homogeneous
and isotropic material with Young's modulus E, Poisson's ratio ν
and shear modulus G¼ E=½2ð1þνÞ�. If the panel is much wider
than long, i.e. L5nsb, where ns is the number of stiffeners in the
panel, the critical buckling behaviour of the panel would be strut-
like with a half-sine wave eigenmode along the length. Moreover,
this would allow a portion of the panel that is representative of its
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entirety to be isolated as a strut as depicted in Fig. 1, since the
transverse bending curvature of the panel during initial post-
buckling would be relatively small.

Therefore, the current paper presents an analytical model of a
representative portion of an axially compressed stiffened panel,
which simplifies to a simply supported strut with geometric
properties defined in Fig. 2. The strut has length L and comprises
a main plate (or skin) of width b and thickness tp with two
attached longitudinal stiffeners of heights h1 and h2 with thickness
ts, as shown in Fig. 2(b). The axial load P is applied at the centroid
of the whole cross-section denoted as the distance y from the
centre line of the plate. The rigidity of the connection between the
main plate and stiffeners is modelled with a rotational spring of
stiffness cp, as shown in Fig. 2(c). If cp¼0, a pinned joint is
modelled, but if cp is large, the joint is considered to be completely
fixed or rigid. Note that the rotational spring with stiffness cp only
stores strain energy by local bending of the stiffener or the main
plate at the joint coordinates ðx¼ 0; y¼ �yÞ and not by rigid body
rotation of the entire joint in a twisting action.

2.1. Modal descriptions

To model interactive buckling analytically, it has been demon-
strated that shear strains need to be included [28,29] and for thin-
walled metallic elements Timoshenko beam theory has been
shown to be sufficiently accurate [21,18]. To model the global
buckling mode, two degrees of freedom, known as “sway” and
“tilt” in the literature [30], are used. The sway mode is represented
by the displacement W of the plane sections that are under global

flexure and the tilt mode is represented by the corresponding
angle of inclination θ of the plane sections, as shown in Fig. 2(d).
From linear theory, it can be shown that W(z) and θðzÞ may be
represented by the following expressions [30]:

WðzÞ ¼ �qsL sin
πz
L
; θðzÞ ¼ qtπ cos

πz
L
; ð1Þ

where the quantities qs and qt are the generalized coordinates of
the sway and tilt components respectively. The corresponding
shear strain γyz during bending is given by the following expres-
sion:

γyz ¼
dW
dz

þθ¼ �ðqs�qtÞπ cos
πz
L
: ð2Þ

In the current model, only geometries are chosen where global
buckling about the x-axis is critical.

The kinematics of the local buckling modes for the stiffener and
the plate are modelled with appropriate boundary conditions.
A linear distribution in y for the local in-plane displacement uðy; zÞ
is assumed due to Timoshenko beam theory:

uðy; zÞ ¼ YðyÞuðzÞ; ð3Þ
where YðyÞ ¼ ðyþyÞ=h1, as depicted in Fig. 3(a).

Formulating the assumed deflected shape, however, for out-of-
plane displacements of the stiffener wðy; zÞ and the main plate
wpðx; zÞ, see Fig. 3(b), the stiffness of the rotational spring cp,
depicted in Fig. 2(c), is considered. The role of the spring is to resist
the rotational distortion from the relative bending of the main
plate and the stiffener with respect to the original rigid body
configuration. The shape of the local buckling mode along the
depth of the stiffener and along the width of the main plate can be
therefore estimated, using the Rayleigh–Ritz method [31], by a
nonlinear function that is a summation of both polynomial and
trigonometric terms. The general form of these approximations
can be expressed by the following relationships:

wðy; zÞ ¼ f ðyÞwðzÞ; wpðx; zÞ ¼ gðxÞwpðzÞ; ð4Þ
where

f ðyÞ ¼ B0þB1YþB2Y
2þB3Y

3þB4 sin ðπYÞ;
gðxÞ ¼ C0þC1Xþð�1ÞiC2X

2þC3X
3þC4 sin ðπXÞ; ð5Þ

and XðxÞ ¼ x=b. Moreover, for i¼1, the range x¼ ½0; b=2� and for
i¼2, the range x¼ ½�b=2;0�. For f(y), the constant coefficients B0,
B1, B2, B3 and B4 are determined by applying appropriate boundary
conditions for the stiffener. At the junction between the stiffener

Fig. 1. An axially compressed simply supported stiffened panel of length L and
evenly spaced stiffeners separated by a distance b.

Fig. 2. (a) Elevation of the representative portion of the stiffened plate modelled as strut of length L that is compressed axially by a force P. (b) Strut cross-section geometry.
(c) Modelling the joint rigidity of the main plate–stiffener connection with a rotational spring of stiffness cp. (d) Sway and tilt components of the global buckling mode.
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