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a b s t r a c t

To date, despite the significant development in the field of structural mechanics, there still remains
a paradox in the solutions available for a classical shell buckling problem. The difference in strength
between a cylindrical shell under uniform axial compression and that under pure bending is not quite
well investigated. This lack of research is reflected in the wide variations in the elastic bending strength
and the slenderness limits given in current international design standards. The discrepancies in the
available classical solutions and hence the design rules have initiated the current research. The main aim
of this paper is to present a closed-form solution for the elastic buckling strength of unstiffened circular
cylinders under pure bending using a new simplified energy approach employing the well-known Ritz
method. Two types of analyses are presented for cylinders with large (D/t4200) and medium (100oD/
to200) diameter-to-thickness ratios. A unique testing rig was used to experimentally verify the new
theory using a Moiré fringe film. The theoretical results are compared against the available and present
test results and the existing classical solutions. The current design rules for thin-cylinders in international
steel specifications are also compared, and the newly derived design curve is proposed which was found in
a good agreement with the available test results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Paradox in slenderness limits

There is presently a paradox in the difference between the static
yield limits λey and λy for tubes and cylinders under axial and bending
loads, respectively. λey is used in AS 4100 [1] to define a fully effective
section under uniform axial compression, while λy is used to define
a slender section that fails by elastic buckling under pure bending.

Table 1 shows that a number of design codes adopts λy/λey¼1.0
such as DIN 18800 [2], AIJ [3], BS 5950 [4], and Eurocode 3 [5].
However, ANSI 360-10 [6] adopts λy/λey¼2.75. AS 4100 [1] adopts
λy/λey¼1.46. Elchalakani et al. [7] based on an extensive experi-
mental testing derived λy/λey¼1.71. It is the author's opinion that
the discrepancies in the yield limit ratio (λy/λey) values between
the design rules are resulting from different assumptions made in
the developed theories and presentation of experimental results
for elastic buckling of tubes and cylinders. It is also the author's
opinion that the condition of λy/λey¼1.0 adopted in a number of
steel specifications is unnecessary and very conservative as it will
be further discussed in the paper.

A thick-walled cylinder under uniform axial compression fails by
forming the well-known elephant foot, whereas it ovalises under pure
bending in the inelastic range and then it fails by forming a smooth
kink in the plastic range. On the other hand, a thin-walled cylinder
fails by forming the diamond mode around the whole circumference
(Fig. 2a), whereas it only forms such mode in the compression zone
under pure bending. The main differences between the two types of
loading are the presence of stress gradient under pure bending and
the number of half-waves formed in the circumferential direction. The
stress gradient shown in Fig. 2b has two effects on the behaviour
within the elastic range. First, it relatively reduces the total force
applied to the buckles, hence it limits the zone of instability and delays
buckling. Second, the buckles under bending are comparatively
retrained by adjacent lesser stressed fibres. This restraining action is
significant compared to the symmetric diamond mode under uniform
axial compression (Fig. 2b), where all the fibres are stressed to the
same degree. Such comparatively large restrained fibres could explain
why the experimentally derived ratio λy/λey is often found more than
1.0 in the tests [7].

1.2. Past theoretical investigations

Table 2 lists the previous known closed-form solutions for
elastic and inelastic buckling for thin-cylinders under pure bending.
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Flugge [8] used an equilibrium method and performed a bifurcation
buckling analysis of thin-walled tubes. He assumed small deflections
and membrane pre-buckling stresses to derive the buckling equa-
tions. His results showed that the critical buckling stress under pure
bending is 33% larger than the corresponding one under uniform
axial compression (sb=sa ¼ 1:33). This corresponds to a yield limit
ratio of λy/λey¼1.33.

Seide and Weingarten [9] also used an equilibrium method and
assumed small deflections to derive the critical buckling stress for
an infinitely long tube subjected to pure bending. They used
Batdorf's modified Donnell's differential equation for buckling
and the applied Galerkin's method to derive the stability criteria
to solve the differential equation under a stress gradient due to
bending. Their results showed that the ratio of scr under axial

compression to the corresponding one under pure bending is
essentially equal (sb=sa ¼ 1:0). This corresponds to a yield limit
ratio of λy/λey¼1.0. Karyadi [10] carried out finite element analyses
on thin-walled tubes where D/t¼200 and subjected to both
uniform axial compression and bending. He studied the effect of
length variation on the elastic buckling stress where L/D¼0.1 to 5.
His numerical results showed that the stress ratio sb/sa non-
linearly varies with the length of the tube. He showed that
sb ¼ 1:07sa for very short tubes where L/D¼0.1, whereas sb ¼
1:02sa for relatively longer tubes where L/D¼2.5. Murray and
Bilston [11] performed a non-linear buckling analysis for non-
compact tubes that fail by forming the ripples in Fig. 3a. They
derived equations based on the well-known “Beam-on-Elastic
Foundation” model and found that sb ¼sa if the elastic modulus

Nomenclature

AIJ Architecture Institute of Japan
a elliptical ripple major dimension
am amplitude of displacements
an amplitude of displacements
b elliptical ripple minor dimension
CHS circular hollow sections
D mean diameter of the tube
E modulus of elasticity
ET tangent modulus of steel tube
H flexural rigidity of the tube wall
K buckling coefficient
Km buckling coefficient for cylinders with medium

slenderness
Kn Buckling coefficient for cylinders with large

slenderness
K0m buckling coefficient for cylinders with medium

slenderness
K0n buckling coefficient for cylinders with large

slenderness
L total length of tube
Lm more Fringe film length
LAB distance between right and left wheels
Mcr critical elastic buckling moment
N0 critical maximum axial compressive force per

unit length
Nx non-uniform axial compressive force per unit length
n number of half-waves within ellipse in hoop direction

in Chapter 7
R mean radius of tube used in Chapter 2

Rlw radial dimension at left loading wheel
Rrw radial dimension at right loading wheel
t thickness of cylinder
Wint internal work dissipated in the mechanism
Wext external work done by the applied moment
x, y, z rectangular coordinates
Z elastic section modulus
Ze effective section modulus
α1' and αr' angular change at loading wheel
ΔD initial out of round, or average ovalisation
ΔU change in strain energy due to bending
ΔW change in work done by compression force
εcr critical strain
γc central arc angle defined in Chapter 7
γ1' and γr' left and right jack angles
κcr critical curvature
χ strength reduction factor
χ0 coefficient
λs section slenderness defined in AS 4100
λy yield slenderness limit for pure bending
λey yield slenderness limit for axial compression
λs (D/t)(sy/250)
ν Poisson's ratio
scr critical buckling stress under axial compression
sa critical buckling stress under uniform axial

compression
sy yield stress of steel tube
sb critical buckling stress under pure bending
ΣWi sum of the elastic work
θ relative angle of rotation

Table 1
Yield slenderness limits for CHS in international codes [λ¼(D/t)/(sy/250)].

Country Code/investigators Yield limit
ratio λy/λey

Axial compression
yield limit λey

Pure bending

Plastic limit λp Yield limit λy

Australia AS 4100 [1] 1.46 82 50 120
Elchalakani et al. [7] 1.71 82 60 140

New Zealand NZS 3404 [26] 1.46 82 50 120
Canada CAN/CSA S 16.1 [33] 1.0 92 72 92
Germany DIN 18800, Part 1 [2] 1.0 84 65 84
Japan AIJ [3] 1.0 94 N/A 94
Belgium NBN 51-002 [27] 1.0 94 65 94
United Kingdom BS 5950, Part 1 [4] 1.0 88 62 88
Europe Eurocode 3, Part 1.1 [5] 1.0 84 65 84
USA ANSI 360-10 [6] 2.75 91 57 250

Sherman [15] 2.75 91 57 250
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