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a b s t r a c t

This paper introduces two semi-analytical models developed for the nonlinear analysis of stability of
isotropic and orthotropic plates under uniaxial compression. The possibility of considering fully free in-
plane displacements at longitudinal edges (or unloaded edges) is the innovation of these models over
existing models, where these displacements are always assumed constrained to remain straight.
Contributions for the large deflection theory of plates related to the derivation of analytical solutions
for the Airy stress function which satisfy Marguerre's equations for isotropic and orthotropic plates are
presented. Namely, the extension of the Coan and Urbana solution for isotropic plates in order to
consider all the terms of the unknown amplitudes of the out-of-plane displacements and the derivation
of a solution for orthotropic plates. Comparisons between the semi-analytical model and nonlinear finite
element model results are presented in order to discuss the effect of in-plane displacement boundary
conditions on behaviour and strength of plates similar to bottom flanges used in steel box girder bridges.
This study shows that the semi-analytical models have a clear potential to provide accurate solutions,
requiring only a short computer time. It is also shown that the in-plane displacement boundary
conditions for the unloaded edges significantly influence the behaviour and strength of plates and this
problem cannot be neglected in the definition of the design rules.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The nonlinear finite element simulation used for the analysis
and design of steel plated structures is a powerful tool especially
for research, but for the design purpose it is neither generalised
nor competitive. Recent work in the field of semi-analytical
methods used for the nonlinear analysis and design of steel plated
structures with buckling problems has shown an important and
alternative tool that provides an efficient and understandable
response [1–9].

The semi-analytical method uses the two nonlinear fourth-order
partial differential equations of the large deflection theory, the
equilibrium and compatibility equations derived by von Kármán in
1910 [10] for perfect plates and extended to plates with initial
imperfections by Marguerre [11]. The method is called semi-
analytical because in a first step an analytical solution for the Airy
stress function (F) is obtained solving the compatibility equation.
Trigonometric series satisfying the boundary conditions are adopted
for the out-of-plane displacements (w) and for the initial imperfec-
tions (w0). In a second step approximate solutions for the unknown
amplitudes (q) of the out-of-plane displacements are obtained
solving the equilibrium equation using a variational method. Based
on the approximate solutions for the unknown amplitudes of the
out-of-plane displacements, on the kinematic and constitutive rela-
tions and on the yield criterion it is possible to analyse the post-
buckling behaviour and to predict the ultimate strength of the plate.

Analyses of the post-buckling behaviour of isotropic and
orthotropic plates under uniaxial compression with all edges
simply supported were reported by several authors since the early
nineteen forties. These studies are well documented in reference
works [12,13], from which can be highlighted the analytical
solutions for the Airy stress function, which satisfy von Kármán's
equations for plates with the in-plane displacements perpendicu-
lar to the edges constrained to remain straight in all edges, derived
by Levy [14] for isotropic plates and by Soper [15] for orthotropic
plates and the analytical solution for the Airy stress function that
satisfies Marguerre's equations for isotropic plates with in-plane
displacements perpendicular to the edges constrained to remain
straight in loaded edges and free in unloaded edges, derived by
Coan and Urbana [16]. The Coan and Urbana study was limited to
odd number terms m and n for the unknown amplitudes (qmn) of
the out-of-plane displacements and it was extended by Yamaki
[17] to include the even number terms n, where m and n represent
the number of half-waves of the out-of-plane displacement mode
in the longitudinal and transverse directions respectively.

Nowadays two computational programs use the semi-analytical
method to analyse the post-buckling behaviour of plates and to
predict their ultimate strength. The computer program ALPS/ULSAP,
which uses a semi-analytical method previously known as the
incremental Galerkin method [18] and the computer program PULS
developed at Det Norske Veritas (DNV) and accepted as general
buckling code for ship and offshore platform structures as part of the
DNV specifications [19]. The main difference between the two
programs is how the equilibrium equation is solved. The ALPS/ULSAP
program uses the Galerkin method [20,21], while the PULS program
uses the Rayleigh–Ritz method [1,22].

The semi-analytical models which have been developed are
restricted to plates supported by rigid transverse and longitudinal

girders. This kind of arrangement is typical in ship, aircraft, tank
and offshore platform structures where it is assumed that the
plate is simply supported and the in-plane displacements perpen-
dicular to the edges are constrained to remain straight in all edges.
Generally, in bottom flanges of steel box girder bridges there are
no neighbouring panels in the longitudinal edges to provide this
kind of constraint and it is on the safe side to consider the
longitudinal edges with fully free in-plane displacements that
are characteristic of edges free from stresses.

This paper introduces two semi-analytical models developed
for the nonlinear analysis of stability of isotropic and orthotropic
plates under uniaxial compression that allow us to consider the
two types of in-plane displacement boundary conditions men-
tioned above: in-plane displacements perpendicular to the edges
constrained to remain straight in all edges (designated as case CC)
and in-plane displacements perpendicular to the edges con-
strained to remain straight in loaded edges and free in unloaded
edges (designated as case CF). The case CF for the in-plane
displacement boundary conditions is the innovation of the pre-
sented models over existing ones.

In this study the semi-analytical model for isotropic plates is
used for the analysis of unstiffened plates used in steel girder
bridges and the semi-analytical model for orthotropic plates is
used for the analysis of stiffened plates. The stiffened plate is
treated in an approximate way as an equivalent orthotropic plate.

In order to develop these semi-analytical models analytical
solutions should be obtained in the scope of the large deflection
theory of plates considering the case CF for the in-plane displace-
ment boundary conditions, namely to extend the Coan and Urbana
[16] solution for isotropic plates to include the even and odd
number terms m and n for the unknown amplitudes of the out-of-
plane displacements and to derive a solution for orthotropic
plates. This paper presents analytical solutions for the Airy stress
function satisfying Marguerre's equations for isotropic and ortho-
tropic plates to solve these two issues, which are contributions of
this work for the large deflection theory of plates.

Finally, the paper presents a comparison between the semi-
analytical model and nonlinear finite element model results. The
nonlinear finite element model results were obtained using the
program ADINA [23]. The presented results also allow a discussion
about the effect of the in-plane displacement boundary conditions
for the unloaded edges on the behaviour and strength of plates.

2. Analysis method

2.1. General

The coordinate system and the notation for the theoretical
analysis presented in this paper are shown in Fig. 1. A simply
supported plate with an initial imperfection w0, width b, length a
and thickness t under longitudinal uniform compression s is
considered, in which the xy plane coincides with the plate mid-
surface and the z-axis is perpendicular to the plate mid-surface.
The displacement components at a point, occurring in the x, y and
z directions, are denoted by u, v and w respectively.

In order to study the effect of in-plane displacement boundary
conditions for the unloaded edges on the behaviour and strength
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