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a b s t r a c t

This paper addresses the nonlinear vibration problem of simply supported functionally graded (FG)
cylindrical shells with embedded piezoelectric layers. The governing differential equations of motion of
the FG cylindrical shell are derived using the Lagrange equations under the assumption of the Donnell's
nonlinear shallow-shell theory. A semi analytical approach, wherein the displacement fields are
expanded by means of a double mixed series based on linear mode shape functions for the longitudinal,
circumferential and radial variables, is proposed to characterize the nonlinear response of the cylindrical
shell. The large-amplitude response and amplitude frequency curves of the cylindrical shell are obtained
by using the proposed approach. Finally, the effects of excitation force and applied voltage on the
vibration behavior of the cylindrical shell are investigated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a class of composite
materials consisting of two or more different materials whose
material properties are gradually varied in one or more directions.
Due to this favorable feature, such type of composites provides the
possibility to develop materials whose properties can be precisely
adjusted to the requirements of a certain application. For this
reason, FGMs have found many applications in different branches
of engineering such as nuclear, mechanical, aerospace, and auto-
motive engineering [1–6].

On the other hand, the FGMs can be integrated with piezo-
electric materials in order to improve their dynamical behaviors.
The piezoelectric materials are well-known for their sensing and
actuating capabilities. These structures have the ability to control
the size, shape, vibration and stability of the structural compo-
nents due to their direct and converse piezoelectric effects. For
example, a piezoelectric sensor layer can monitor the deformation
of a structure while a piezoelectric actuator layer can control the
deformation of the structure through the converse piezoelectric
effect. For this reason, the piezoelectric materials have found many
applications in vibration control and monitoring [7–10]. Therefore,
it is of great importance to analyze the behavior of structures
made of FGMs integrated with piezoelectric materials.

Due to above-mentioned favorable features, the analysis of linear
and nonlinear vibration response of FGMs and piezoelectric materials

has attracted research interest in recent years. An analytical study on
nonlinear dynamic stability of simply supported circular cylindrical
shells composed of FGM under periodic axial loading was performed
by Darabi et al. [11]. Nonlinear buckling and postbuckling behaviors of
FG cylindrical shells which are synchronously subjected to axial
compression and lateral loads were studied by Huang and Han [12].
Nonlinear thermoelasticity, vibration, and stress wave propagation
analysis of thick-walled cylinders made of FGMs with temperature-
dependent properties was performed by Shariyat et al. [13]. Duc and
Tung [14] proposed an analytical approach to investigate the nonlinear
response of FG cylindrical panels under uniform lateral pressure with
temperature effects is incorporated. The non-linear free vibration of a
FG doubly-curved shallow shell of elliptical plan-form was investi-
gated by Chorfi and Houmat [15] using the p-version of the finite
element method in conjunction with the blending function method.
The effects of transverse shear deformations, rotary inertia, and
geometrical non-linearity were also studied. An attempt on the
dynamic control of FGM shells in the frequency domain was carried
out by Liew et al. [16] by using self-monitoring sensors and self-
controlling actuators. The coupled vibration of an inhomogeneous
orthotropic piezoelectric hollow cylinder filled with internal compres-
sible fluid was studied by Chen et al. [17]. The analysis was directly
based on the three-dimensional equations of piezoelasticity and the
cylinder shell was assumed to have a FG property along the thickness
direction. Three-dimensional static behavior of doubly curved FG
magneto-electro-elastic shells under the mechanical load, electric
displacement and magnetic flux was studied by Wu and Tsai [18] by
an asymptotic approach. An analytical study for electromagnetother-
moelastic behaviors of a hollow cylinder composed of functionally
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graded piezoelectric material (FGPM) placed in a uniform magnetic
field and subjected to electric, thermal and mechanical loadings was
carried out by Dai et al. [19]. The free vibration problem of multi-
layered shells with embedded piezoelectric layers was investigated
by Alibeigloo and Kani [20] using a hybrid state space differential
quadrature method. However, to the authors' best knowledge, the
information regarding the nonlinear vibration of FG cylindrical shells
with embedded piezoelectric layers is rare and this is the reason why
this paper tries to investigate this topic in the paper.

In the present work, the linear and nonlinear vibrations of
simply supported FG cylindrical shells with piezoelectric layer on
their outer surface are studied. The properties of FGM are assumed
to be graded in the thickness direction according to a volume
fraction power law distribution. The formulation of the problem is
based on the Donnell's nonlinear shallow-shell theory and the
Fourier series expansion method is used to solve the problem. In
the case of linear analysis, the fundamental frequencies and mode
shapes of the cylindrical shell are calculated. And, in the case of
nonlinear analysis, the governing equations are derived using the
Lagrange equations and solved using the ODE45 Runge–Kutta
routine in MATLAB. The time–amplitude response and amplitude
frequency curves of the cylindrical shell are obtained and the
effects of excitation force and applied external voltage on vibration
characteristics of the cylindrical shell are examined.

2. Governing equations and solution procedure

2.1. Linear analysis

Fig. 1 shows the coordinate system of a FG cylindrical shell
which is embedded with a piezoelectric material in its outer
surface. The geometrical parameters of the cylindrical shell are
mid-surface radius (R), thickness of FG cylindrical shell (h),
thickness of piezoelectric layer (hp) and length (L). The cylindrical
shell is assumed to be thin with a uniform thickness (hþhp). The
displacement components in the x, θ and z directions are denoted
by u, v and w, respectively.

As pointed out earlier, FGMs are composite materials obtained
by combining and mixing two or more different constituent
materials. In this paper the FG material is assumed to be combined
form two constituent materials. The Young modulus E, Poisson
ratio ν, and the mass density ρ of the FG cylindrical shell are
assumed to vary through the thickness according to the power-law
function as follows [21]:

EF ¼ ET �EBð Þ 2zþh
2h

� �N

þEB ð1Þ

νF ¼ νT �νBð Þ 2zþh
2h

� �N

þνB ð2Þ

ρF ¼ ρT �ρB

� � 2zþh
2h

� �N

þρB ð3Þ

where N is the power-law exponent. Furthermore, the subscripts T
and B indicate the properties of the FG cylindrical shell at its top
and bottom surfaces, respectively.

Based on the state of generalized plane stress of shells, the
normal stress is assumed to be zero in the radial direction. In this
regard, the fundamental equations of the FG and piezoelectric
materials for a thin cylindrical shell can be expressed as [22]:
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for piezoelectric material, where the subscripts F and P denotes
FGM and piezoelectric material, respectively; fsg; fεg; fDg and fEg
are the vectors of stress, strain, electric induction, and the electric
field, respectively; ½QF �; ½QP �; ½e� and ½ξ� denote the elastic con-
stants for FGM, elastic constants for piezoelectric material, piezo-
electric constants and dielectric constants, respectively. The elastic
constants, for both FGM and piezoelectric materials, are defined as
follows:

Q11F ¼Q22F ¼
EF
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νFEF
1�ν2F
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EF
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ð7Þ
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The components of the electric field ði:e:; Ex; Eθ ; and EzÞ are
defined by the electric potential function ϕ in the curvilinear
coordinate system as follows [23]:

Ex ¼ �∂ϕ
∂x

; Eθ ¼ �1
R
∂ϕ
∂θ

; Ez ¼ �∂ϕ
∂z

ð9Þ

For considering both the direct and converse piezoelectric effects,
the electric potential function ϕ is defined as a layerwise quadratic
distribution of the electric potential according to the Fernandes
and Pouget model [24]:

ϕ¼ 2
G z�hþhp

2
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4

 !
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where ψ x ; θ ; t
� �

is the induced electric potential by elastic
deformation in the piezoelectric element, and G is the electric
potential applied on the piezoelectric surfaces such that:

ϕðz¼ h=2þhpÞ ¼ G ð11Þ

ϕðz¼ h=2Þ ¼ �G ð12Þ
The strain components εx; εθ and εxθ which are the strains in the
x-direction, the circumferential direction and the shear strain in
the xθ-plane of the middle surface, respectively, can be expressed
as:Fig. 1. Coordinate system of FG cylindrical shell with piezoelectric layer.
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