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a b s t r a c t

Flutter of cantilevered, functionally graded cylindrical shells under an end axial follower force is addressed.
The material properties are assumed to be graded along the thickness direction according to a simple
power law. Using the Hamilton principle, the governing equations of motion are derived based on the
first-order shear deformation theory. The stability analysis is carried out using the extended Galerkin
method and minimum flutter loads and corresponding circumferential mode numbers are obtained for
different volume fractions, length-to-radius, and thicknesses-to-radius ratios. Two different configura-
tions are considered for the FGM: one in which the metal phase is the outer layer and the ceramic phase
is the inner one, and the other vice versa. Results indicate the ranges of major influence due to the
volume fraction, and the combined effect of thickness and volume fraction on the flutter load. Also,
the optimum and critical power parameters between zero and infinity for which the flutter loads are
maximum and minimum are determined.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The flutter problem dates back to 1969 in cantilever rubber
pipes containing low-pressure air flows [1]. Two basic types of
instability may exist in pipes containing fluid flows: one charac-
terized with zero frequency, called divergence, and the other with
non-zero frequency, known as flutter. However, the prevailing
instability type in these structures is flutter, which occurs in high-
speed fluid flows. When undergoing follower forces, the only
instability type in structures with moderate thicknesses is flutter,
which is, for the most part, limited to columns, reservoirs, and
aero-space structures [2]. The most well-known problem pertain-
ing to follower forces is Beck's problem, in which a concentrated
follower force is applied at the free end of a cantilever. Practical
applications of this problem include the thrust applied on the end
of a projectile, gas turbine rotors, the gripping force in disk brakes,

the thrust applied on the body of aircraft structures by a jet engine,
the eccentric load exerted on a platform by a tip mass, etc. [3–5].

In recent years, Functionally-Graded Materials (FGM) have
received wide applications in engineering mechanics since lami-
nated composites can encounter delamination when undergoing
great mechanical or temperature loads due to different deforma-
tion fields occurring in different layers which lead to inter-layer
stresses. Thus, in order to control the mechanical properties
including the amounts and localities of temperature stresses,
yielding and ultimate strengths, and crack stimuli and zones, FG
materials are generally preferable to laminated composites [6].
Of the most notable applications of FGM is in air-plane landing
gears, reservoirs containing chemical, radioactive, or plasma set-
tings, high-speed aircrafts (including skin structures such as
fuselages), propulsion systems in air planes, cutting instruments,
incinerators, heat exchangers, turbine blades, etc. [7–12].

Some works about flutter of cylindrical shells under follower
forces are reported in the literature. In this respect, Altman and De
Oliviera [13,14] studied the dynamic stability of cantilever cylind-
rical and conical panels with and without slight internal damping.
They asserted that due to numerical defects, the critical load
calculated becomes occasionally very small. To overcome this
problem, a slight damping matrix proportional to the stiffness
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matrix can be used in the solution. Bochkarev and Matveenko [15]
studied the dynamic stability of cylindrical shells conveying fluid
for free–free and clamped-free boundary conditions by using the
perturbation of velocity potential method. Biswas et al. [16] used a
finite-element approach, based on the first-order shear theory
(FST) and Sander's approximation, to study the effect of flaws on
free vibration, buckling, and dynamic instability — both flutter and
divergence — of cross-ply and angle-ply composite curved shell
panels subjected to non-uniform, centrally-distributed, and edge-
distributed follower forces. They evaluated the effects due to load
type, load width, damage, and damage location on the natural
frequency, buckling, divergence or flutter load, and flutter-threshold
frequency. Their results demonstrated that that narrow-edge loading
is undesirable in most cases.

Flutter of FGMs has been studied by many researchers. Con-
sidering the effect of temperature, Haddadpour et al. [17] pre-
dicted the flutter of FGM cylindrical shells under supersonic air
flow by using the Classic Plate Theory (CST) and considering the
von Karman nonlinearity. They observed that flutter load can
become very small, even zero at temperatures near a specific
critical temperature.

Although a large amount of work concerning the flutter of
homogeneous cylindrical shells under follower forces is reported
in the literature, to the best of the authors' knowledge, it seems
that work on the corresponding problem for FGM shells is meager.
Thus, the dynamic stability of FGM cylindrical shells under
follower forces will be discussed in the sequel. For this purpose,
Love's hypotheses along with FST are used to derive the differential
equations of motion, and the extended Galerkin method is used to
solve the equation systems. The problem is solved for two types of
FGM, one hardening, and the other softening with power.

2. Theoretical formulation

2.1. Functionally graded materials

For the FGM cylindrical shell, depending on whether the outer
surface is pure metal or pure ceramic, the effective mechanical
properties including elasticity modulus and Poisson's ratio, and
physical parameters such as density, thermal expansion coeffi-
cient, and thermal conductivity can be obtained using either Eqs.
(1) or (2) [18].

Fef f ðzÞ ¼ FmVmðzÞþFc½1�VmðzÞ� ¼ ðFm�FcÞVmðzÞþFc;Vm

¼ z
h
þ1
2

� �N

;NZ0 ð1Þ

Fef f ðzÞ ¼ FcVcðzÞþFm½1�VcðzÞ� ¼ ðFc�FmÞVcðzÞþFm;Vc

¼ z
h
þ1
2

� �N

;NZ0 ð2Þ

where Fef f is the effective mechanical or physical property and Fm
and Fc are the corresponding parameters for the metal and
ceramic phases, respectively. Also, Vm and Vc stand for the volume
fraction of metal and ceramic, respectively. The ceramic phase has
greater elasticity modulus and lower density and Poisson's ratio
compared to the metal phase [18]. Therefore, in the case that the
volume fraction is defined by Eq. (1), the effective elasticity
modulus of FGM increases with N; thus, it is called hardening
FGM (by the author). All the same, if the volume fraction is defined
using Eq. (2), the effective elasticity modulus is decreased with N,
i.e. it is named softening FGM. Fig. 1 depicts the definition of
hardening and softening FGM.

The properties of FGM materials are temperature-dependent. In
the present research, the temperature has been assumed to be

constantly equal to the reference temperature (the environment
temperature), i.e. 300 K. In this case, the elasticity moduli, Pois-
son's ratios, and densities of nickel, stainless steel, and alumina
will be obtained as included in Table 1 [19,20].

2.2. Constitutive equations

Consider a cylindrical shell with radius R, thickness h, and
length L. In case that the coordinate system is taken to be as shown
in Fig. 2a, then according to FST, the deformation components of
any point can be written as [18]:

uðx;θ; z; tÞ ¼ u0ðx;θ; tÞþzϕxðx;θ; tÞ
vðx;θ; z; tÞ ¼ v0ðx;θ; tÞþzϕθðx;θ; tÞ
wðx;θ; z; tÞ ¼w0ðx;θ; tÞ

ð3Þ

where u0, v0, and w0 are the displacement components of the
middle surface and ϕx and ϕθ are changes in the slope of the
normal to the middle surface around θ and x axes, respectively.
The stress resultants per unit length for a cylindrical shell are
shown in Fig. 2b.

For the strain components, Love's hypotheses are used, which
express the following [18]:

– The transverse normal is inextensible.
– Normals to the reference surface of the shell before deforma-

tion remain straight, but not necessarily normal, after
deformation.

– Deflections and strains are infinitesimal.
– The transverse normal stress is negligible (plane-stress state is

invoked).

Fig. 1. (a) The coordinate system and (b) strain resultants considered for cylindrical
shells [17,18].
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