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a b s t r a c t

A fully geometrically nonlinear finite element (FE) model is developed using large rotation shell theory
for static analysis of composite and piezoelectric laminated thin-walled structures. The proposed large
rotation theory is based on the first-order shear deformation (FOSD) hypothesis. It has six independent
kinematic parameters which are expressed by five mechanical nodal degrees of freedom (DOFs). Linear
electro-mechanically coupled constitutive equations with a constant electric field distribution through
the thickness of each smart material layer are considered. Eight-node quadrilateral plate/shell elements
with five mechanical DOFs per node and one electrical DOF per smart material layer are employed in the
FE modeling. The present large rotation FE model is implemented into static analysis of both composite
and piezoelectric laminated plates and shells. The equilibrium equation is solved by Newton–Raphson
algorithm with system matrices updated in every iteration. The results are compared with those pre-
sented in the literature and others calculated by various simplified nonlinear shell theories. They indicate
that large rotation theory has to be considered for the calculation of displacements and sensor output
voltages of smart structures undergoing large deflections, since other simplified nonlinear theories fail to
predict the static response precisely in many cases.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Smart structures are those integrated with smart materials, e.g.
piezoelectrics, electrostrictives, magnetostrictives, etc., acting as
sensors and actuators in a feedback architecture. Due to a number
of beneficial properties of thin-walled smart structures, the
applications are greatly increasing in many fields of technology,
like automotive and aerospace engineering, for vibration control,
shape control, noise control, damage detection, health monitoring,
among others.

The simulation of the static behavior of smart structures is
essential for designing and manufacturing of smart structures. This
requires models which are able to predict the static behavior
of smart structures precisely. In contrast to three-dimensional
(3-D) FE methods, see [1–7] among many others, which give very
precise FE models but with large size of system matrices, one-
dimensional (1-D) and two-dimensional (2-D) FE methods based
on various hypotheses are much more frequently used, due to
small model size and relative high accuracy.

The majority of papers in the literature proposed geometrically
linear 1-D or 2-D FE models for static or dynamic analysis of
electro-mechanically coupled problems based on various hypoth-
eses, e.g. Bernoulli beam theory [8,9], Timoshenko beam theory
[10], Kirchhoff-Love plate/shell theory which yields the so-called
classical plate/shell theory [11–17], or Reissner–Mindlin plate/shell
theory known as FOSD theory, see [18–25] among many others.
In order to describe the transverse shear strain distribution in
thickness direction more precisely, a third-order shear deforma-
tion (TOSD) or higher-order shear deformation (HOSD) hypothesis
was first proposed by Reddy [26,27]. Later the theory was
extended and applied to FE analysis of smart structures by Correia
et al. [28], Correia et al. [29] and Moita et al. [30]. Furthermore,
Loja et al. [31] and Soares et al. [32] presented higher-order
B-spline FE strip models for laminated composite structures
bonded with piezoelectric patches. More advanced shear deforma-
tion hypotheses, e.g. first-order zigzag [25,33], and third-order
zigzag [34,35] shear deformation theories have been applied to
smart structures as well.

Since linear models are only valid for problems at small strains
and small rotations, geometric nonlinearity was taken into account
on various levels for modeling of large deflections and large
amplitude vibrations of thin-walled structures with isotropic,
orthotropic or anisotropic materials. Reddy developed von Kármán
type geometrically nonlinear FE models based on FOSD [36] and
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TOSD [37,38] hypotheses for composite laminated structures. A
moderate rotation theory was first proposed by Librescu and
Schmidt [39], Schmidt and Reddy [40], and later applied by
Palmerio et al. [41,42] and Kreja et al. [43]. Considering more
strain–displacement relations, Bouhafs et al. [44] and Klosowski
and Woznica [45] developed fully geometrically nonlinear FE
models of composite structures, which are, however, restricted
to the range of moderate rotations. A number of papers proposed
large or finite rotation theories for static analysis of composite
structures, which can be found in [46–50] among others.

However, there are only a few papers which implemented
nonlinear theories in modeling of thin-walled structures inte-
grated with smart materials e.g. piezoelectric, electrostrictive or
magnetostrictive materials. The papers that appeared recently
mainly developed von Kármán type nonlinear FE models using
different kinematic hypotheses for smart structures. Kapuria and
Dumir [51] presented a von Kármán type nonlinear FE model
based on classical plate theory. FE models using von Kármán type
nonlinearity have been developed also based on FOSD [52,53] and
TOSD [54,55] hypotheses. Additionally, a zigzag theory has been
applied by Ray and Shivakumar [56] and Sarangi and Ray [57] with
a layerwise FOSD hypothesis, and by Icardi and Sciuva [58] with a
layerwise TOSD hypothesis, while Kapuria and Alam [59] proposed
a first-order zigzag theory with a global third-order displacement
variation. Applying moderate rotation theory, Lentzen et al. [60,61]
developed nonlinear FE models for piezoelectric integrated smart
structures based on FOSD hypothesis, which include more non-
linearities than von Kármán type nonlinear theory. Furthermore,
fully geometrically nonlinear FE models have been developed by
Moita et al. [62] based on classical theory, by Gao and Shen [63]
and Kundu et al. [64] based on FOSD hypothesis, and by Dash and
Singh [65] based on TOSD hypothesis. However, the fully geome-
trically nonlinear FE models presented in [62–65] are not real large
rotation models, even though full geometric nonlinearities are
included. In order to extend the analysis to smart structures
undergoing large deflections and rotations, Chroscielewski et al.
[66,67] developed one-dimensional (1-D) large rotation FE models
for shape and vibration control of curved beams. Recently, Zhang
and Schmidt [68] developed 2-D large rotation FE models for
dynamic analysis of piezoelectric integrated smart plates and
shells. In contrast to 1-D and 2-D FE methods, Marinković et al.
[69,70] developed a degenerated shell element for fully geome-
trically nonlinear analysis of thin-walled piezoelectric structures.
Yi et al. [71], Klinkel and Wagner [72,73] developed 3-D full
nonlinear FE models for static and dynamic analyses of smart
structures.

Concerning the nonlinear analyses of thin-walled smart struc-
tures, most of the studies are focusing on von Kármán type
geometrically nonlinear theory and moderate rotation theory. A
few papers took into account fully geometrically nonlinear theory,
however, they use only five parameters (three mid-surface dis-
placements and two mid-surface rotations) which is permitted
only for small or moderate rotations, see [50,68]. Therefore, these
nonlinear shell theories cannot predict static or dynamic behavior
of smart structures precisely when the structures undergo large
rotations. Based on the earlier work of Kreja and Schmidt [50], and
Kreja [74] on large rotation nonlinear FE static analysis of isotropic
or orthotropic laminated structures, the aim of this paper is to
develop a large rotation nonlinear FE model for static analysis of
piezoelectric laminated thin-walled smart structures based on
FOSD hypothesis. The present implemented large rotation theory
has six independent kinematic parameters, which are expressed
by five mechanical nodal DOFs using Euler angle relations. A
nonlinear static FE model, including an equilibrium equation and
a sensor equation, is derived by the FE method and the principle of
virtual work. Eight-node quadrilateral shell elements with five

mechanical DOFs per node and one electrical DOF per smart layer
are adopted in the FE analysis. In order to deal with locking effects,
two element types are considered: SH851FI for full integration
and SH851URI for uniformly reduced integration. The present FE
model is tested by using a benchmark problem of a composite
plate, and later applied to the simulation of piezoelectric coupled
smart beams, plates and shells.

2. Strain field

The large rotation shell theory has six independent kinematic
parameters expressed by five nodal DOFs, abbreviated as LRT56
theory, which can be found in [50,68]. Full geometrically nonlinear
strain–displacement relations are considered in LRT56 theory. In
order to clearly describe LRT56 theory, some basic vectors are
introduced as shown in Fig. 1. Here, the Cartesian coordinate
system (X1;X2;X3) is fixed as global coordinates, and the curvi-
linear coordinates (Θ1

;Θ2
;Θ3) are used to represent the geometry

of the structures, which can be e.g. plate, cylindrical, spherical or
any other coordinate systems. The position vectors of an arbitrary
point in the shell space and at the mid-surface are denoted by
RðΘ1

;Θ2
;Θ3Þ and rðΘ1

;Θ2Þ, respectively. The base vectors gi are
tangent vectors in the shell space, and aα; a3ðnÞ are those at the
mid-surface. The vectors in the deformed configuration are indi-
cated by an overbar. In the undeformed configuration, n is a
normal unit vector, and Θ3 is a straight line. Latin indices
represent the numbers 1, 2 or 3, and the Greek ones vary between
1 and 2. The relation between R and r in the undeformed
configuration can be expressed as

RðΘ1
;Θ2

;Θ3Þ ¼ rðΘ1
;Θ2ÞþΘ3n: ð1Þ

Using the FOSD hypothesis, straight lines in thickness direction
remain straight but not normal to the mid-surface after deforma-
tion. The relation between R and r in the deformed configuration
reads as follows:

RðΘ1
;Θ2

;Θ3Þ ¼ rðΘ1
;Θ2ÞþΘ3a3: ð2Þ

According to the geometric relations displayed in Fig. 1, the displace-
ment vector u can be obtained as

u¼ u
0 þΘ3u

1
; ð3Þ

with

u
0 ¼ r�r¼ v

0
αaαþv

0
3n; ð4Þ

u
1 ¼ a3�n¼ v

1
αaαþv

1
3n; ð5Þ

where v
0
1, v

0
2, v

0
3 are the translational displacements at the mid-surface

referred to the contravariant base vectors aα , n, and v
1
1, v

1
2, v

1
3 are the

generalized rotational displacements, i.e. the projections of u
1
in the

contravariant base vector triad of the undeformed mid-surface. Due to

Fig. 1. Definition of base vectors.
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