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a b s t r a c t

The nonlinear forced vibration of infinitely long functionally graded cylindrical shells is studied using the
Lagrangian theory and multiple scale method. The equivalent properties of functionally graded materials
are described as a power-law distribution in the thickness direction. The energy approach is applied to
derive the reduced low-dimensional nonlinear ordinary differential equations of motion. Using the
multiple scale method, a special case is investigated when there is a 1:2 internal resonance between two
modes and the excitation frequency is close to the higher natural frequency. The amplitude–frequency
curves and the bifurcation behavior of the system are analyzed using numerical continuation method,
and the path leading the system to chaos is revealed. The evolution of symmetry is depicted by both the
perturbation method and the numerical Poincaré maps. The effect of power-law exponent on the
amplitude response of the system is also discussed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are composite materials
made of two or more constituent phases with smoothly variable
volume fraction. One of the remarkable advantages of FGMs is the
elimination of stress discontinuity that is often encountered in
laminated composites, and accordingly, delamination-related pro-
blems being avoided [1]. Many researchers and engineers believe
that FGMs will play a very important role in many engineering
applications. Numerous reports on the studies of functionally
grade (FG) structures have been published [2]. As for vibration
and dynamic problems of FG structures, many pioneering studies
can be obtained from Loy et al. [3], Cheng and Batra [4], Reddy and
Cheng [5], Yang and Shen [6–8]. Different types of higher order
shear deformation theory are developed to investigate the gradi-
ent effects of FGMs in a precise manner. Yang and Shen [8], Huang
and Shen [9] employed a higher order shear deformation shell and
plate theory respectively to study the free vibration and dynamic
response of FG cylindrical panels and plates. Zenkour [10] studied
the buckling and free vibrations of FG sandwich plates based on
sinusoidal shear deformation plate theory, and it was found that
the classic plate theory showed a good accuracy for FG thin plates.
Those else who consider the shear deformation in the study of
vibration of FG structures include Matsunaga [11–13], Hosseini-
Hashemi et al. [14], etc. Multi-layered method was used by Shakeri

et al. [15] to describe the material gradient of FGMs approxi-
mately; and they analyzed the dynamic response of FG thick
hollow cylinders using Galerkin finite element and Newmark
methods. Meanwhile, some researchers investigate the dynamic
problems of FG structures directly based on three-dimensional
(3D) elastic theory. Malekzadeh and co-workers [16,17] analyzed
3D free vibration of FG thick annular plates and truncated conical
shells. Vel [18] gave an exact elastic solution for the vibration of FG
anisotropic cylindrical shells based on the 3D linear elastody-
namics. Asgari and Akhlaghi [19] presented a natural frequency
analysis of thick hollow cylinders made of two-dimensional (2D)
FGM according to 3D equations of elasticity.

Pradyumna and Bandyopadhyay [20] investigated free vibra-
tion of FG curved panels using a higher-order finite element
formulation. Oyekoya et al. [21] developed a Mindlin-type element
and a Reissner-type element to study the buckling and vibration
frequencies of FG rectangular plates. Talha and Singh [22] inves-
tigated the large amplitude free vibration frequencies of FG
rectangular plates based on a nonlinear finite element formulation
taking the higher order shear deformation into account. Tornabene
and co-workers [23–25] analyzed the frequency characteristics of
FG plates, annular plates, parabolic panels, conical and cylindrical
shells, respectively, using generalized differential quadrature
method based on a first order shear deformation theory; using
the same method, Viola and Tornabene [26] discussed the natural
frequencies of FG parabolic panels of revolution; in order to
describe gradient properties of FGMs along thickness direction
in a more precise manner, they developed a multi-parametric
generalized power-law distribution function to model material
properties of FGMs.
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Recently, Alijani and co-workers [27] studied the nonlinear
forced vibrations of FG doubly-curved shallow shells with rectan-
gular planform based on the Donnell0s nonlinear shallow shell
theory; bifurcation diagrams and the Poincaré maps were
obtained, and chaotic regions were illustrated by calculating
Lyapunov exponents and Lyapunov dimension. In another research
[28], the authors discussed the impact of steady temperature
distribution on the nonlinear vibrations of FG doubly curved
shallow shells. Meanwhile, they [29] also investigated the non-
linear vibrations of FG plates in thermal environment, and
revealed significant effect of non-linearity on the vibration of FG
plates. Hao et al. [30] analyzed nonlinear dynamic behaviors of
cantilever FG rectangular plates in thermal environment; the 1:1
internal resonance between first two modes and 1:2 subharmonic
resonance were discussed using asymptotic perturbation method;
and the numerical results showed that cantilever FG rectangular
plates occurred periodic, quasi-periodic and chaotic motion in
some given conditions.

This work deals with the nonlinear forced vibration of infinitely
long FG cylindrical shells using the Lagrangian theory and multiple
scale method. The properties of FGM are assumed to be graded in
the thickness direction according to a simple power-law distribu-
tion. Donnell0s nonlinear shell theory and energy approach are
employed to derive the reduced low-dimensional nonlinear ordin-
ary differential equations of motion of FG cylindrical shells. The
complicated response and bifurcation characteristics are discussed
for a 1:2 internal resonance between two modes and a higher-
frequency primary resonance excitation occurring simultaneously.
The phenomenon of so-called symmetry breaking and restoring,
and chaotic motion are predicted by both perturbation method
and numerical Poincaré maps.

2. Basic equations

2.1. Energy formulation

A FG cylindrical thin shell with mid-surface radius R and thick-
ness h is considered in a reference frame of cylindrical coordinate
system, where x is longitudinal, θ circumferential, z normal
(positive inwards); and w is the deformation along radial direction,
as shown in Fig. 1.

Assume that the FG cylindrical shell is made of two constituent
materials. And the effective properties P (Young0s modulus E,
Poisson0s ratio ν, mass density ρ) are considered to be graded in
thickness direction according to a power-law distribution:

PðzÞ ¼ ðP1�P2Þ
h�2z
2h

� �N

þP2 ð1Þ

where P1 and P2 are respectively the properties of constituent
material, the subscripts 1 and 2 indicate constituent 1 and con-
stituent 2 respectively; the superscript N is the power-law expo-
nent, NA[0, 1), reflecting the volume fraction of constituent 1.
According to Eq. (1), the inner surface (z¼h/2) is constituent 2 rich
whereas the outer surface (z¼�h/2) is constituent 1 rich. Here,
we introduce some material moduli which will be used in the
analysis:
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Based on Donnell0s nonlinear shell theory, the strain-displacement
relations defined in the cylindrical coordinate frame can be
written as [31]

εx ¼ ε0x þzκx; εθ ¼ ε0θ þzκθ ; γxθ ¼ γ0xθþzκxθ ð3Þ
where εx and εθ are strain components along x and θ direction,
respectively, γxθ is shear strain in xθ plane. ε0x , ε

0
θand γ0xθ are the

membrane strains, defined as:ε0x ¼ u;xþw;xx=2, ε0θ ¼ ðv;θ�wÞ=
Rþðw;θÞ2=2R2, γ0xθ ¼ v;xþu;θ=Rþw;xw;θ=R; while κx, κθ and κxθ
are the curvatures, given by: κx¼�w,xx, κθ¼�w,θθ/R2 and κxθ¼
�2w,xθ/R, where a comma denotes differentiation with respect to
x or/and θ variables. Meanwhile, according to Donnell0s nonlinear
shell theory the membrane force resultants (Nx, Nθ, Nxθ) of a
cylindrical shell can be written as
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where the moduli are defined respectively as
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Reversing Eq. (4), the membrane strains can be expressed as
functions of membrane force resultants and curvatures

ε0x ¼D0NxþD0Nθ�D1κx�D1κθ

ε0θ ¼D0NxþD0Nθ�D1κx�D1κθ

γ0xθ ¼ 2ðD0�D0ÞNxθ�ðD1�D1Þκxθ ð6Þ
Introducing the in-plane Airy stress function φ, such that Nx ¼
φ;θθ=R

2, Nθ ¼ φ;xx and Nxθ ¼ �φ;xθ=R. Then the compatibility equa-
tion is obtained as

D0∇2∇2φ¼∇2
1w�D1∇2∇2w�1

2
ℓðw;wÞ ð7Þ

here, ∇2ðdÞ ¼ ðdÞ;xxþðdÞ;θθ=R2 and ∇2
1ðdÞ ¼ ðdÞ;xx=R, the nonlinear

operator ℓðα; βÞ is defined as ℓðα; βÞ ¼ ðα;xxβ;θθþβ;xxα;θθ�
2α;xθβ;xθÞ=R2.

Instead of obtaining the governing equation, energy expressions
for both kinetic and potential energy are gained to characterize a thin
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Fig. 1. Geometry of FG cylindrical shell and reference coordinate.
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