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a b s t r a c t

The nonlinear free flexural vibration of skew nanoplates is studied by considering the influences of free
surface energy and size effect (small scale) simultaneously. The formulations are derived based on
classical plate theory (CPT) in conjunction with nonlocal and surface elasticity theories using Hamilton0s
principle. Green0s strain tensor together with von Kármán assumptions is employed to model the
geometrical nonlinearity. The free surfaces are modeled as two-dimensional membranes adhering to the
underlying bulk material without slipping. The solution algorithm is based on the transformation of
the governing differential equation from the physical domain to a rectangular computational one, and
discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an
efficient and accurate numerical tool. The effect of small scale parameter and surface effect together with
the geometrical parameters and boundary conditions on the nonlinear frequency parameters of the skew
nanoplates are studied.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The nanostructural elements such as nanowires, nanorods,
nanobeams and nanoplates have been used as the building blocks
in modern science and technology in recent years, for example, in
micro/nano electromechanical systems (MEMS/NEMS) [1] and
biosensors [2]. This is because they have superior mechanical,
electrical and thermal performances with respect to the conven-
tional structural elements. On the other hand, since the thin
nanoplates can undergo large deformation without violating the
failure criteria, the nonlinear analysis becomes essential to accu-
rately achieve the dynamic behavior of these nanostructural
elements for engineering design and manufacture.

Both experimental observations [3–5] and atomistic simulations
[6–8] indicate that when the structural size decreases towards the
nanoscale regime, their mechanical properties and consequently
their response become size-dependent. This is because the surface
layers differ from their bulk counterparts in that their elastic
responses are intrinsically size-dependent and the surface-to-bulk
energy ratio increases with the increase of surface-to-volume ratio.
Hence, the surface energy becomes a significant part of the total
elastic potential energy and should be taken into account when
studying the mechanical behavior of this type of elements, which is

usually neglected in the classical elasticity theory. On the other
hand, the size (small scale) effect, which is due to long-range inter-
atomic interaction, has significant influence on the mechanical
behavior of the nanostructural elements and should be considered
to achieve solutions with acceptable accuracy [8].

Both surface and small scale effects inherently appear in the
governing equations when one uses atomistic simulation methods
to analyze the nanostructural elements. But, these methods con-
sume much time and are computationally expensive for analyzing
nanostructures with large numbers of atoms. Thus, because of the
simplicity, computational efficiency and accuracy, continuum
mechanic approaches are often adopted; see for example Refs.
[9–29]. To overcome the drawbacks of the classical continuum
theory in predicting the size dependence (free surface energy) and
small scale effect of material properties of nanostructures, usually
the surface elasticity theory of Gurtin and Murdoch [30,31] and
the nonlocal elasticity theory of Eringen [32–34] are employed,
respectively.

Based on the surface elasticity theory of Gurtin and Murdoch
[30,31], the surfaces are modeled as two-dimensional membrane
adhering to the underlying bulk material without slipping to
account the effect of surfaces/interfaces on mechanical properties.
It has been shown that with correct choice of surface elastic
properties, this surface elasticity theory explains various size-
dependent phenomena at the nanoscale and the predictions fit
well with atomistic simulations and experimental measurements
[4,35,36]. Also, the nonlocal elasticity theory of Eringen is imple-
mented by assuming that the stress at a point is a function of the
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strains at all points in the domain and as a result, the inter-atomic
forces and atomic length scales directly appear in the constitutive
relations as material parameters [32–34].

In recent years, some studies have been performed to investi-
gate the surface effects on the bending and the linear and
nonlinear free vibration of nanoplates; see for example Refs.
[21–25]. However, in these interesting studies the nonlocal effect
has not been taken into account. On the other hand, based on the
nonlocal constitutive relation of Eringen and without including the
surface effects, some researchers have been attempted to develop
nonlocal nanoplate models and apply them to analyze linear and
nonlinear vibration behaviors of nanoplates; see for example Refs.
[9–20]. To the best of authors0 knowledge, the work of Wang and
Wang [29] is the only one which includes both the surface and
nonlocal effects on the linear free vibration behavior of nanoplates.
They employed both the classical as well as the first-order shear
deformation theories to study the linear free vibration behavior of
simply supported rectangular nanoplates.

From the literature survey, it can be seen that the surface and
nonlocal effects on the nonlinear free vibration analysis of rectan-
gular nanoplates have been investigated separately. On the other
hand, the previous studies showed that both these phenomenon
have significant effects on the vibrational behavior of nanoplates.
Hence, in this paper, the nonlinear free vibration analysis of skew
nanoplates is performed by considering both the surface as well as
the small scale effects simultaneously. The formulation is derived
based on the classical plate theory (CPT) in conjunction with the
von Kármán geometrical nonlinearity assumptions. Since it is not
possible to obtain the analytical solution for the nonlinear free
vibration analysis of skew nanoplates with arbitrary boundary
conditions, the approximate methods should be employed to solve
the problem. In addition, the DQM is an efficient and accurate
numerical approach compared to the weighted residual methods
[37–43]. Hence, this numerical method is employed to solve the
nonlinear differential governing equation of skew nanoplates
subjected to arbitrary boundary conditions. The effects of surface
elasticity, nonlocal parameter, skew angle and amplitude ratio of
the skew nanoplates on the nonlinear natural frequency of the
skew nanoplates are studied.

2. Mathematical modeling and solution procedure

Consider a skew nanoplate of length a, width b and thickness h
as shown in Fig. 1. It is assumed that the nanoplate is homo-
geneous and isotropic. A Cartesian coordinate system (x,y,z) is used
to label the material points of the skew nanoplate in the unde-
formed reference configuration. Since the large deformation effect
is practically important for thin nanoplates, the CPT seems to be
sufficient for modeling of the dynamic behavior of the thin
nanoplates. Based on the CPT, the displacement components
u (in the x-direction), v (in the y-direction) and w (in the
z-direction) of an arbitrary material points of the nanoplate can
be approximated as,

uðx; y; z; tÞ ¼ uðx; y; tÞ�z
∂w
∂x

; ð1aÞ

vðx; y; z; tÞ ¼ vðx; y; tÞ�z
∂w
∂y

; ð1bÞ

wðx; y; z; tÞ ¼wðx; y; tÞ ð1cÞ
where u, v and w are the in-plane displacement components along
the x and y-directions and the transverse displacement component of
the material point (x,y) on the mid-surface of the nanoplate. Using
Eq. (1) and based on the von Kármán assumptions, the nonzero
components of Green0s strain tensor in terms of the displacement

components become,

εxx ¼ ε0xx�z
∂2w
∂x2

; ð2aÞ

εyy ¼ ε0yy�z
∂2w
∂y2

; ð2bÞ

γxy ¼ γ0xy�2z
∂2w
∂x∂y

; ð2cÞ

where εii(i¼x,y) and γxy are the normal and shear strain tensor
components of an arbitrary material point of the nanoplate, respec-
tively; also, ε0iiði¼ x; yÞ and γ0xy are the normal and shear strain tensor
components of an arbitrary material point on the mid-plane of the
nanoplate, respectively,

ε0xx ¼
∂u
∂x

þ1
2

∂w
∂x

� �2

; ð3aÞ

ε0yy ¼
∂v
∂y

þ1
2

∂w
∂y

� �2

; ð3bÞ

γ0xy ¼
∂v
∂x

þ∂u
∂y

þ∂w
∂x

∂w
∂y

: ð3cÞ

The constitutive relations of the upper (Sþ) and lower (S�)
surface layers as given by Gurtin and Murdoch [30,31] can be
expressed as

s7
xx ¼ τ70 þð2μ7

0 þλ70 Þε7xx þðλ70 þτ70 Þε7yy ; ð4aÞ

s7
yy ¼ τ70 þð2μ7

0 þλ70 Þε7yy þðλ70 þτ70 Þε7xx ; ð4bÞ

s7
xy ¼ ð2μ7

0 �τ70 Þγ7xy ð4cÞ

Here, τ70 are the residual surface tension under unstrained
condition, μ7

0 and λ70 the surface Lame0s constants, ε7ii and γ7ij
ði; j¼ x; yÞ the normal and shear strain components of the surfaces
S7 , respectively. Without loss of generality, it is assumed that the
surfaces S7 have the same material properties,

λ70 ¼ λs; ð5aÞ

Fig. 1. The geometry of skew nanoplate.
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