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a b s t r a c t

The important role of geometric imperfections on the decrease of the buckling load for thin-walled
cylinders had been recognized already by the first authors investigating the theoretical approaches on
this topic. However, there are currently no closed-form solutions to take imperfections into account
already during the early design phases, forcing the analysts to use lower-bound methods to calculate the
required knock-down factors (KDF). Lower-bound methods such as the empirical NASA SP-8007
guideline are commonly used in the aerospace and space industries, while the approaches based on
the Reduced Stiffness Method (RSM) have been used mostly in the civil engineering field. Since 1970s a
considerable number of experimental and numerical investigations have been conducted to develop new
stochastic and deterministic methods for calculating less conservative KDFs. Among the deterministic
approaches, the single perturbation load approach (SPLA), proposed by Hühne, will be further
investigated for axially compressed fiber composite cylindrical shells and compared with four other
methods commonly used to create geometric imperfections: linear buckling mode-shaped, geometric
dimples, axisymmetric imperfections and measured geometric imperfections from test articles. The finite
element method using static analysis with artificial damping is used to simulate the displacement
controlled compression tests up to the post-buckled range of loading. The implementation of each
method is explained in details and the different KDFs obtained are compared. The study is part of the
European Union (EU) project DESICOS, whose aim is to combine stochastic and deterministic approaches
to develop less conservative guidelines for the design of imperfection sensitive structures.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the beginning of 1900s researchers developing formulations
for the buckling of thin-walled cylinders, e.g. Southwell (1914) [1],
have observed a discrepancy between theoretical and experimental
results. In particular, the measured buckling loads were typically much
lower than the corresponding predicted buckling loads of a geome-
trically perfect cylinder. Southwell found that his theory could not be
applied for real cases where there are geometric imperfections and
load asymmetries. Flügge (1932) [2] and Donnell (1934) [3] were the
first authors to develop formulations taking into account the effects of
initial geometric imperfections, but the non-linear analyses failed to
predict the experimental buckling loads. Their analyses required the

use of large-magnitude geometric imperfections, that “could scarcely
have escaped the notice of the investigators” [4]. Flügge’s and
Donnell's theories produce a gradual appearance of buckles with
increasing the compression load, whereas in the experiments, buck-
ling is typically characterized by a sudden dynamic buckling event and
corresponding reduction in load. Koiter's theory (1945, which was
translated from Dutch to English in the 1960s by Riks) was the first to
predict accurately the imperfection sensitivity trends that were
observed experimentally [4]. In 1950 Donnell and Wan [5], indepen-
dently from the study of Koiter, modified the procedure adopted by
Donnell [3] sixteen years earlier and proposed a new method, which
was followed by several investigators with some modifications [6].
Arbocz (1992) [7] states that the Koiter's “General Theory of Elastic
Stability” is widely accepted. However, it is important to mention that
Koiter's theory is valid if the elasticity limit is not exceeded anywhere
in the material [8]. In addition, the theory is based on an asymptotic
expansion about the bifurcation point and is limited to small-
magnitude imperfections and the range of validity is generally
unknown.
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In the meanwhile, the design of imperfection sensitive structures
required guidelines explaining how to take imperfection sensitivity
into account, for instance, in the calculation of rocket and launcher
structures [9]. In 1960, Seide, Weingarten and Morgan (see [10,11])
published a collection of experimental results which was one of the
main precursors for the well-known NASA SP-8007 guideline, pub-
lished in 1965 and revised in 1968 to its most popular version [12].
Fig. 1 shows this collection of experimental results and the lower-
bound curve that gives the shell buckling knock-down factor denoted
by γ in Eq. (1.1). Calculating γ for isotropic unstiffened cylinders
requires only the cylinder radius and the wall thickness, as shown in
Eq. (1.1). This equation also shows the equivalent thickness teq that is
often used when calculating the KDF for orthotropic materials.
However, note that approach for calculating knockdown factors for
orthotropic materials does not consider all the orthotropic stiffness
terms such as membrane-bending coupling, the two laminate direc-
tions and tension-shear are not included. These stiffness terms can
have a significant influence on the buckling behavior, consequently on
the resulting knock-down factors, as demonstrated by Geier et al.
(2002) [13].
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A11, A22, D11 and D22 are the extensional and bending stiff-
nesses extracted from the composite ABD matrix.

In the NASA SP-8007 guideline the KDF denoted by γ in Eq. (1.1)
is called correlation factor, accounting for the disparity between
experiments and theory. Theoretical equations for the buckling load
for both isotropic and orthotropic cylinders are also provided in
NASA SP-8007, where the correlation factor is used, but in modern
applications of γ, the theoretical buckling load is usually calculated
using linear buckling analysis and the design load obtained multi-
plying this theoretical buckling load by γ as shown in Eq. (1.2).

Fdesign ¼ Ftheoretical:γ ð1:2Þ
The Reduced Stiffness Method (RSM) developed by Croll (1972)

[14], Batista & Croll (1979) [15] and collaborators is another
method for calculating lower-bounds. Croll & Batista (1981) [16]
used this concept to find lower-bounds for axially compressed
linear-elastic isotropic cylinders. It has been mostly applied in the
civil engineering field [17] and it is based on three postulates
summarized as follows [18]: (1) significant geometric non-
linearities appear due to changes in membrane resistance. For
instance, in the buckling of an in-plane loaded plate there is no
non-linearity up to the point where some disturbance causes a

normal deformation. The normal deformation causes a load
eccentricity that creates bending, interacting non-linearly with
the reduction of the membrane stiffness, which decreases in the
post-buckled range of loading. In any case where a thin-walled
structural member is initially under high compressive stress levels,
with a high membrane component of the strain energy, the
displacements are predicted linearly up to the point where the
membrane stiffness starts to decrease. (2) For thin-walled struc-
tures, the post-buckling loss of stiffness can only occur when there
is membrane resistance at the pre-buckled state, meaning that if
the shell does not have membrane energy prior to buckling there
will be no loss of stiffness after buckling. (3) The lower-bound
buckling load for a particular load case will be given by an analysis
in which the membrane stiffness is removed.

Sosa et al. (2006) [19] showed the equivalence between the
reduced stiffness method and the reduced energy method (REM).
Along this study the REM will be implemented in a general finite
element solver following the procedure explained by Sosa et al., in
which a reduction factor α is applied to the membrane stiffness
components instead of completely eliminating it, as originally pro-
posed by Croll [18]. This approach assumes that the shell with
degraded membrane stiffness will have a post-buckled shape similar
to an eigenvector obtained through linear buckling analysis. Sosa and
Godoy (2010) [20] compared the REM using this assumption with
non-linear post-buckling analysis and showed that this assumption
may not be valid in some cases, leading to non-conservative estima-
tives. In such cases the computation of correction coefficients is
required, making the REM less straightforward. The KDF using the
REM is defined in Eq. (3.4). The implementation of the REM is
explained in detail in Section 3.6.

Comparative studies performed by Hilburger et al. (2004) [21],
Hühne et al. (2005) [22] and (2008) [23] and Degenhardt et al.
(2008) [24] have shown that the lower-bound given by the NASA SP-
8007 guideline can lead to conservative designs. Moreover, the space
industry experience has shown that structures designed for buckling
using the NASA SP-8007 guideline can be so conservative that, when
tested after manufactured, fail for strength. Hühne suggested the
single perturbation load approach (SPLA) as a robust method for
creating a single buckle imperfection, referred herein as SPLI. Using
the classification given by Winterstetter and Schmidt (2002) [25],
Hühne classifies the SPLI as a “worst”, “realistic” and “stimulating”
imperfection. Another way of producing such single buckles is by
directly translating the nodes in the finite element mesh. Wulls-
chleger (2002) [26], suggests a simple model for these geometric
dimple imperfections (GDI). Section 3.3 gives more details about this
formulation and its implementation. Fig. 2 shows a typical knock-
down curve obtained with the SPLA, where it can be seen that the
buckling load (P) becomes nearly constant after a given level of single
perturbation load (SPL), called minimum perturbation load (P1).

The idea of a single buckle as a worst imperfection was firstly
pointed out by Esslinger (1970) [27] using high-speed cameras.
Deml and Wunderlich (1997) [28] came to the same conclusion
using a modified finite element formulation in which the nodal
positions are treated as extra degrees-of-freedom (DOFs) which
will vary along the solution within a pre-set amplitude. In this
optimization problem for which the lowest buckling load is sought

Fig. 1. Test data for isotropic cylinders subjected to axial compression (modified
from Arbocz and Starnes Jr. [9]).
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Fig. 2. Typical Knock-Down curve obtained with the SPLA.
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