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a b s t r a c t

Free vibration of a plate-cavity system is analytically studied in this paper. For this purpose, a rectangular
enclosure composed of one flexible and five rigid walls are taken into account. The flexible wall is
modeled by the Von-Karman plate theory and the Galerkin method is employed to derive interior
acoustic pressure and subsequent equations of motion. Harmonic balance approach, variational iteration
method (VIM) and direct integration method are employed to determine nonlinear natural frequencies of
the coupled system. A parametric study is then carried out and effects of different parameters on the
value of frequency ratio are studied.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration of a plate backed by an air cavity has been one of the
interesting research areas in recent years. One could address
varieties of applications including vehicular and railway coach
cabins, aircraft fuselages/skin panels, acoustical instruments
and different aerospace structures. Different aspects of dynamic
response of a cube enclosure have been already addressed in the
literature. Pretlove [1] studied free vibration of a rectangular panel
backed by a closed cavity using an analytical method. Linear
natural frequencies of the coupled system were obtained by a
matrix iteration technique in that study. Free vibration of a
rectangular plate-cavity system was investigated by Qaisi [2].
Natural frequencies and mode shapes of the system were deter-
mined and effect of the cavity depth on the fundamental
frequency was examined for different boundary conditions. Naka-
nishi et al. [3] derived a closed form expression for plate-cavity
system by employing Helmholtz integral. They investigated the
effect of different air cavity parameters on the plate vibration and
sound field inside the coupled system. Kim and Kim [4] studied
the interaction between a flexible structure and cavities of infinite
and semi-infinite sizes. Structural-acoustic coupling influence on
the natural frequency of an enclosure with one flexible wall was
studied by Lee et al. [5]. They developed a theoretical model of a
semi-cylindrical enclosure with a flexible panel [6]. Sound absorp-
tion of a flexible panel in a plate-cavity system has been also
targeted in recent years. Lee et al. [7] developed an absorption

criterion based on the modal analysis approach and compared
the theoretical and experimental results. Jump phenomenon was
captured in a panel-cavity system and effect of nonlinearity on
the sound absorption properties was studied by Lee et al. [8].
Other different methods have been also used to investigate the
problem of plate-cavity system. Green's function method, mixed
finite element and classical formulation, impedance-mobility
approach and probabilistic approach were employed by different
researchers [9–12]. Interaction between a circular plate and
a cylindrical fluid cavity was studied by Gorman et al. and
Hasheminezhad et al. [13,14]. Mohamady et al. [15] examined
the interior noise of an enclosure transmitted by a flexible panel.
They used a harmonic point source outside the system and then
predicted the eigenfrequencies of the coupled system by use of
the finite element method. Resonance frequencies of a plate-
cavity system have been analyzed by other procedures such as
mode summation and harmonic balance method [16,17]. Active
control of an enclosure composed of one flexible and five rigid
walls has been also addressed in the literature [18–21]. More
recently, sound absorption of a curved panel backed by a cavity
was studied by Lee et al. [22].

Coupled nonlinear equations of motion for the plate modes can
appropriately describe the problem of interaction between the air
cavity and a flexible wall. Among the investigations provided in
the literature, vibrating modes of the plate structure are assumed
to be uncoupled with the others. In the present study, nonlinear
differential equations of a plate backed by an air cavity are studied
using an analytical method. It is shown that coupling between
modes of the system has a significant effect on the results. It is
shown that in addition to the cavity-plate coupling, nonlinear
coupling between the mode shapes should be taken into account.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/tws

Thin-Walled Structures

0263-8231/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.tws.2013.09.023

n Corresponding author. Tel.: +982177491218.
E-mail address: Younesian@iust.ac.ir (D. Younesian).

Thin-Walled Structures 74 (2014) 191–200

www.sciencedirect.com/science/journal/02638231
www.elsevier.com/locate/tws
http://dx.doi.org/10.1016/j.tws.2013.09.023
http://dx.doi.org/10.1016/j.tws.2013.09.023
http://dx.doi.org/10.1016/j.tws.2013.09.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2013.09.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2013.09.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tws.2013.09.023&domain=pdf
mailto:Younesian@iust.ac.ir
http://dx.doi.org/10.1016/j.tws.2013.09.023


Variational iteration method (VIM) is employed to solve the
nonlinear equations of the system. Nonlinear natural frequencies
are also determined by use of the harmonic balance approach.
Results are compared in time and frequency domains. Sensitivity
of the frequency–amplitude relationship with respect to different
parameters is then examined in a parametric study.

2. Mathematical modeling

2.1. Problem formulation

Interaction between a flexible plate and air cavity is mathema-
tically modeled in this section. Schematic configuration of the
system is shown in Fig. 1. The model is composed of a flexible plate
of length a, width b and thickness h, five rigid walls and an
acoustic enclosure of depth c. It is assumed that the flexible panel
vibration is governed by the Von-Karman plate theory. Partial
differential equations of the plate can be presented in terms of its
displacement and the Airy stress function as follows [23]:
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in which Wðx; y; tÞ and ϕ represent the plate displacement and the
Airy stress function, respectively.ρ is the plate density, D and E
denote bending stiffness and Young's modulus of the plate and
PEðx; y; tÞ, and Piðx; y; tÞ are the external excitation and acoustic
pressure of the air cavity at z¼ �c. In this study, it is assumed that
the plate is simply supported at its boundaries (SSSS) and the
consequent boundary conditions can be presented by [24]
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Using eigenfunction expansion (Galerkin method), one can
assume the plate displacement and stress function to be
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Substituting Eqs. (5) and (6) into Eqs. (1) and (2) results in the
following equations:
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where αn ¼ nπ=a, and βm ¼mπ=b. Three modes of vibration i.e.
(1,1), (1,2) and (2,1) are taken into account. Expanding Eqs. (7)
and (8), and multiplying the equations by sin nπx=a sin mπy=b
and cos nπx=a cos mπy=b and then by integrating it over the
plate area one can arrive at the general equation of motion
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In order to obtain the plate displacement from the latter
equation, one needs to determine the interior acoustic pressure
at z¼ �c, Piðx; y; tÞ. Acoustic pressure within the air cavity is
governed by the wave equation:
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in which ca is the sound speed inside the cavity. Using
separation of variables technique, the internal pressure is given by

Pðx; y; z; tÞ ¼ XðxÞYðyÞZðzÞTðtÞ ð11Þ

The corresponding boundary conditions for the internal pres-
sure can be presented by

∂P
∂x

����
x ¼ 0; a

¼ 0;
∂P
∂y

����
y ¼ 0; b

¼ 0
Fig. 1. Schematic configuration plate-cavity system.
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