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a b s t r a c t

A long, thin, inextensible cylindrical tube made of Hollomon's power-law material acted upon by a
uniform normal pressure is considered. The nonlinear boundary value problem that governs the
equilibrium states of such a tube is formulated as a differential system of equations. Perturbation
solutions are obtained for the cases of small pressure values in the neighborhood of the critical buckling
pressures. Numerical solutions based on a special initial value problem Matlab solver, Newton's and
shooting methods are obtained. The results show that a high strength material tube deforms similarly to
an elastic material tube for values of strain hardening exponent.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The development of high-strength material made significant
contributions in oil and gas industries, as well as automobile,
aircraft, ships and submarine industries. The development focuses
on the strength properties without reducing the toughness of the
materials and requires understanding of the strength capabilities
of the material both for small (buckling) and for large (post-
buckling) deformations due to small and large forces, respectively.
The purpose of this paper is to determine the buckling loads as
well as the buckling and post-buckling shapes for a circular, long,
inextensible tube made of high strength material subject to a
normal uniform external pressure. This study should be useful in
the design methodologies for pipeline, bridges, buildings, aircraft,
submarine and other structures made of high strength material.

Buckling and post-buckling of circular tubes made of linear
(elastic) material subject to uniform and non-uniform external
pressure are examined analytically, and numerically in many
previous works, for example, see [1–5] and the reference therein.
Several mathematical formulations for the equations that describe
the equilibrium states of such tubes are given in these references.
Among other things, it is determined that the buckling loads are

given by

pc ¼
EI

R3 ðN
2�1Þ; ð1Þ

where NZ2 represents the number of the axes of symmetry of the
non-circular shapes.

Linear (elastic) materials are characterized by the relationship

s¼ Eε ð2Þ
where s, E and ε are the stress, Young's modulus and the strain,
respectively. With this assumption an elastic tube deforms on
applied stress and returns to its original shape as the stress is
removed. Microscopically, this deformation involves stretching of
the molecular network without slipping the atoms past each other
and the molecular structure remains unchanged before and after
stress, see [6].

A strain hardening or work hardening is a process to strengthen
the material through the plastic deformation. Macroscopic plastic
deformation is associated with dislocation within the microstruc-
ture of the material. The dislocation of material microstructure can
result in additional strengthening of the material, therefore
greater stress will be required to initiate plastic deformation
(see, for example, [6,7]).

During work hardening of material mechanical deformation
brings the material into plastic domain and material behaves
nonlinearly. This behavior exhibits a nonlinear relationship between
stress s and strain ε. One common mathematical description of
the work hardening phenomenon for an isotropic material is the
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Hollomon's stress–strain equation:

s¼ Kjεjn�1ε; 0onr1 ð3Þ
where K is the Bulk modulus, n is the strain hardening exponent.
Materials which are described by the above power-law are some-
times called Hollomon or Ludwick materials. Values for K and n for
many materials can be found in some engineering text books (see
for example [6,8,9]). Buckling and deformation of nanotubes made
of nonlinear material have been the subject of many recent articles
(see for example [10] and the reference there in). In the rest of this
paper, due to symmetry, we consider the deformation of a typical
cross section of the tube, that is, the deformation of a circular, thin,
inextensible ring subject to an external uniform pressure acting
normally in the plane of the ring (see Fig. 1).

The layout of the paper is as follows. In Section 2 we present
the equilibrium equations for a Hollomon's power-law material
ring under uniform external pressure as a differential system of
equations. In Section 3 we present a perturbation analysis valid for
small deformation, and show that the buckling loads for a
Hollomon's power-law material ring are given by

pcðnÞ ¼
nKIn
R2þn ðN

2�1Þ: ð4Þ

In Section 4 we present some numerical simulations for the post-
buckling behavior of a Hollomon's power-law material ring for
various values of the strain hardening exponent n. In Section 5 we
give some concluding remarks.

2. Mathematical formulations

We consider the deformation of a thin, inextensible, circular
ring made of high strength material that follows the Hollomon's
law (3), under a uniform external pressure p acting normally on
the ring, see Fig. 1.

For small p40, then the ring remains circular. As p exceeds a
certain critical pressure pc, the first buckling load, the circular
solution becomes unstable and the ring deforms into buckled
states.

As it is done in [1,3,9], balancing the forces and moments acting
on an infinitesimal element ds (see Fig. 2), we obtain the (normal-
ized) differential equations:

dx
ds

¼ cos θ;
dy
ds

¼ sin θ; ð5Þ

and

d2M

ds2
þk

Z
k
dM
ds

ds�p¼ 0; ð6Þ

where ðxðsÞ; yðsÞÞ are the coordinates of a point on the ring, M is the
moment, k¼ dθ=ds is the curvature.

For linear material the moment is directly proportional to the
curvature. For non-linear material, however, the relationship is
more complex. To this end if z be the distance from the neutral
axis then the strain ε is given by

ε¼ zk; ð7Þ
while the bending moment M is given by

M¼
Z
A
sz dA: ð8Þ

Using (7) and (3) in (8), we get

M¼
Z
A
Kjzkjn�1zk � z dA: ð9Þ

The nth moment of inertia In is described (see [5]) by

In ¼
Z
A
znþ1 dA;

which together with (8) give

M¼ KInjkjn�1k: ð10Þ
Eq. (10) may be referred as the generalized Euler–Bernoulli moment
of inertia for a high strength material ring. Similar equations have
been derived in [11,12] in the study of buckling of column and
beams. Note that for n¼1 Eq. (10) reduces to the usual Euler–
Bernoulli moment of inertia for a thin elastic ring.

Eqs. (5), (6) and (10) give the equilibrium equations:

d2

ds2
ðjkjn�1kÞþk

Z
k
d
ds

ðjkjn�1kÞ ds�p¼ 0; 0onr1; ð11Þ

with normalization by R on arc length s and by KIn on pressure p,
and

dx
ds

¼ cos θ;
dy
ds

¼ sin θ: ð12Þ

We observe that if kZ0 then (11) reduce to

d2

ds2
knþ n

nþ1
knþ2�ck�p¼ 0; 0onr1; ð13Þ

where c is an arbitrary constant for integration. For NZ2 axes of
symmetry the associated boundary conditions are

k′ð0Þ ¼ 0; k′
2π
N

� �
¼ 0;

Z 2π=N

0
kðsÞds¼ 2π

N
: ð14Þ

The constant c is to be determined alone with the solutions of (11)
and (12) subject to the conditions in (14) and xð0Þ ¼ yð0Þ.

Fig. 1. A thin ring under uniform external pressure.

Fig. 2. Forces and moments acting on an infinitesimal element.
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