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a b s t r a c t

In this paper we revisit an elastic constitutive equation proposed in two previous works and extend it in
order to include all higher-order terms on the deformations. Our purpose is to assess the influence of
these terms on the elastic buckling of thin-walled rods. The resulting material model was incorporated
into a geometrically exact rod formulation and implemented into a nonlinear finite element code.
By means of simple numerical examples we show that the higher order terms may play a significant role
on the values of the buckling loads and on the post-buckling behavior of thin-walled beams and columns.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled rod structures undergoing large displacements
and large rotations are very common in engineering practice.
The development of geometrically exact kinematical models for
such rod assemblages has consequently attracted much attention
in recent decades, and various papers have been published on the
subject. We mention here the seminal articles of Simo and
Vu-Quoc in [1,2], and the many works that followed (e.g. [3–18]),
to cite just a few.

Due to the geometrical characteristics of these types of rods,
buckling and cross-sectional warping are important aspects that
must be addressed in their modeling. However, not only the
kinematical description of the rod must be able to account for
these aspects, but also the constitutive equation must allow for
a proper coupling of the strains in order to adequately capture the
rod’s behavior.

Linear elasticity is by far the most widely used constitutive
assumption in the nonlinear analysis of rod structures. Accord-
ingly, the stresses are related to the strains by means of a constant
constitutive matrix (constant in the sense that it does not depend
on the rod’s strains). This matrix is a function only of the elasticity

moduli E and G of the material and of the trivial geometrical
properties of the cross-sections (area, first and second moments of
inertia, product of inertia, torsion inertia and, if warping is
considered, warping inertia). What is tricky when large displace-
ments and large rotations are present is that, differently from the
classical case of linear kinematics with small deformations, the
stress–strain work-conjugate pair that is to be related to each
other is not uniquely defined. Many conjugate pairs are indeed
possible (provided frame-invariance is observed) and enforcing a
linear relation between a given pair does not necessarily mean
that the relation will render linear for another. This aspect, if not
addressed properly, may lead to insufficient coupling of the strains
and thus give rise to inaccurate solutions in certain types of
problems. Such issue has been observed in the comprehensive
works of [19–22]. Therein, although through different rod formu-
lations, a simple idea has been proposed to overcome it: if some
specific second-order strain terms are incorporated into the
constitutive relation (or if an appropriate conjugate pair is
selected), the desired coupling eventually shows up and prevents
the misbehavior. The coupling terms came to be identified with
the often called “Wagner terms”, and their effects ended up being
called “Wagner effects” in the context of thin-walled rods.

In [19], specifically, it has been noticed that by adopting the
classical Kirchhoff–St.-Venant relation between second Piola–
Kirchhoff stresses and linearized Green–Lagrange strains one
may attain significantly inconsistent results in the modeling of
torsion buckling problems (i.e., in the modeling of the torsion
mode of buckling in compressed columns). The lack of coupling
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between torsion and compression strains that followed from this
model was identified and the corresponding correcting (quadratic)
terms were proposed. In fact, quadratic terms were proposed for
all strains of the formulation. This was performed within a rod
model that involved six degrees-of-freedom (three displace-
ments and three rotations), i.e., within a kinematical description
where cross-sectional warping was not explicitly taken into
account, and proved to partially fix the problem. The resulting
constitutive equation was called therein the “quadratic Saint-
Venant material”.

With the aim to study the lateral buckling of beams, in [23] the
above ideas were extended to a seven degrees-of-freedom rod
model (the seventh dof being the warping degree-of-freedom).
Due to the complexity of dealing with the warping-related strains
at the constitutive level, however, the quadratic terms were
considered only for (but all of) the non-warping strains. Similar
ideas were proposed by [20,22] (although with fewer, judiciously
chosen, quadratic terms). This lead in [23] to the so-called
“modified quadratic St.-Venant material”, but proved to work only
in certain kinds of lateral buckling problems. It was observed that
the lateral post-buckling behavior was not always possible to be
traced, due to a lack of convergence of the numerical scheme. This
aspect was attributed to the fact that the Kirchhoff–St.-Venant
material law is not a polyconvex material (see e.g. [24] for an
discussion on polyconvexity), and therefore the solution to bound-
ary value problems involving this law may not always be attained
– especially if the strains enter the moderate to large regime, what
can be the case in developed post-buckling stages.

This drawback led the author in [23] to adopt the polyconvex
material model of Simo–Ciarlet ([24,25]) as the starting point, in
place of the Kirchhoff–St.-Venant’s. Analogous derivations as
described above were conducted, arriving at the so-called “mod-
ified quadratic Simo–Ciarlet material”. The problem with the lack
of convergence was then fixed, however the values observed for
the lateral buckling loads were not always consistent. To be more
specific, with the use of this constitutive equation the same
inconsistent buckling loads as with the linearized material were
obtained, both in problems of lateral buckling of beams and of
torsion buckling of columns. A controversial observation was thus
faced: on one hand, the modified quadratic Saint-Venant material
gives correct values for the buckling loads but limited or zero
response in the post-buckling regime; on the other hand, the
modified quadratic Simo-Ciarlet material gives inconsistent values
of the buckling loads but full post-buckling response. In a further
attempt to fix this issue, in [26] the authors incorporated the
second-order warping strain terms into both modified quadratic
constitutive equations, rendering “fully quadratic” material mod-
els. Yet, this did not correct the inconsistencies.

In this context, the purpose of this work is to present an “exact”
elastic constitutive equation (“exact” in the sense that it contains
all higher-order terms on the deformations) for the analysis of
thin-walled rods with warping degrees of freedom. Differently
from [19,23,26], we start from the three-dimensional continuum
mechanics form of the Kirchhoff–St.-Venant material law, relating
the second Piola–Kirchhoff stress tensor to the Green–Lagrange
strain tensor. Such a 3D approach (and for the same work-
conjugate pair) is also found in the works of [10,17,20]. Here,
however, in contrast to these latter and in fact to all other works
we have found in the literature, all higher-order terms on the
Green–Lagrange strains are preserved in the derived expressions
of the stresses. These stresses are then transformed into nominal
stresses (i.e. into first Piola–Kirchhoff stresses) and integrated over
the rod’s cross-section, rendering consistent cross-sectional stress-
resultants. The corresponding elastic tangent moduli (i.e. the
derivatives of these stress resultants with respect to the cross-
sectional strains) are obtained in an exact manner.

Since we work with all terms on the deformations, the inte-
grals that define the stress-resultants become very difficult (if not
impossible) to be evaluated analytically (this would generate
several cross-sectional higher-order geometrical properties with
intricate integrals, especially due to the consideration of warping).
We overcome this by performing numerical integration. However,
the explicit expression of the cross-sectional warping function
turns to be necessary, and this places a drawback within our
model. We propose a simple, yet consistent, warping function that
is well-suited for thin-walled sections. The resulting constitutive
equation was incorporated into the geometrically exact 7-dof rod
model of [6] (which is a generalization of the 6-dof formulation of [5])
and then implemented into a nonlinear finite element code. Buckling
problems of thin-walled beams and columns are analyzed to assess
the extent of the formulation.

The paper is organized as follows: in Section 2 we present
a brief description of the geometrically exact rod kinematical
model adopted herein (this was found necessary in order to show
many of the expressions that we need to build our “exact”
constitutive equation); in Section 3 we derive our constitutive
formulation and incorporate it into the rod model of Section 2; in
Section 4 we introduce our warping function for thin-walled
cross-sections; in Section 5 we show a few (but illustrative)
numerical examples; and in Section 6 we derive our conclusions.

Throughout the text, italic Greek or Latin lowercase letters
a; b;…; α; β;…ð Þ denote scalar quantities, bold italic Greek or Latin
lowercase letters ða; b; …;α; β;…Þ denote vectors and bold italic
Greek or Latin capital letters ðA; B; …Þ denote second-order
tensors in a three-dimensional Euclidean space. Summation con-
vention over repeated indices is adopted, with Greek indices
ranging from 1 to 2 and Latin indices from 1 to 3.

2. Brief description of the rod kinematics

This section outlines the rod kinematical model that we adopt
as the basis for our developments. It has origins in the purely
theoretical work of [6] and was first implemented in [23].
It consists of a geometrically exact formulation in which (i) shear
deformation due to bending and (ii) cross-section warping due to
combined bending/non-uniform torsion are explicitly taken into
account.

A straight reference configuration is assumed for the rod axis at
the outset. A local orthonormal system fer1; er2; er3g with corre-
sponding coordinates fx1; x2; x3g is defined in this configuration,
with vectors erα (α¼ 1;2) placed on the rod cross-section and
er3 placed along the rod axis (see Fig. 1). Points in this configuration
are described by the vector field

ξ¼ ζþar ; ð1Þ
where ζ ¼ x3er3 describes the position of points at the rod axis and
ar ¼ xαerα defines the position of points at the cross-section relative
to the rod axis. Notice that x3AL¼ ½0;ℓ� is the axis coordinate, with
ℓ being the rod reference length.

In the current configuration another local orthonormal system
fe1; e2; e3g is defined, as depicted in Fig. 1. The rod deformation is
then described by a vector field x such that the position of the
material points is expressed by

x¼ zþaþpψe3; ð2Þ
where z¼ ẑðx3Þ describes the position of points at the deformed
axis, a¼ âðxα; x3Þ defines the position of points at the deformed
cross-section in the projection of its plane, ψ ¼ ψ̂ðxαÞ is a function
defining the warping of the cross-section with respect to its shear
center (the so-called warping function) and p¼ p̂ðx3Þ is a scalar
parameter that gives ψ its amplitude.
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