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a b s t r a c t

Results of a theoretical analysis of the local buckling in thin-walled bars with open cross-section
subjected to warping torsion are presented. The local critical bimoment, which generates local buckling
of a thin-walled bar and constitutes the limit of the applicability of the classical Vlasov theory, is defined.
A method of determining local critical bimoment on the basis of critical warping stress is developed. It is
shown that there are two different local critical bimoments with regard to absolute value for bars with an
unsymmetrical cross-section depending on the sense of torsion load (sign of bimoment). However, for
bars with bisymmetrical and monosymmetrical sections, the determined absolute values of local critical
bimoments are equal to each other, irrespective of the sense of torsional load. Critical warping stresses,
local critical bimoments and local buckling modes for selected cases of thin-walled bars with open cross-
section are determined.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cold-formed thin-walled bars with open cross-section belong to
groups of members in which limit load-carrying capacity is pre-
tedermined by local or distorsional buckling. Bending and nonuni-
form torsion occur in thin-walled steel beams in which transverse
load acts off the shear center of the cross-section. Torsional moments
and bimoments appear in cross-sections in the process of lateral-
torsional buckling or flexural-torsional buckling of thin-walled mem-
bers with geometrical (general and local) imperfections. In this case,
torsion moments and bimoments are generated by an amplification
of displacements and angles of rotation “along the directions” of
geometrical imperfection. Contemporary cold-formed steel members,
or beams welded from thin sheet metals with open section, are
characterized by small thickness of walls and relatively small torsional
rigidity. Bimoment caused by warping torsion can be an essential
component of section load for this class of thin-walled members.

For the purpose of precise description of phenomena occurring
in thin-walled bars with open cross-section subjected to warping
torsion, the following definitions will be applied in the further part
of the study:

� A thin-walled bar “with rigid cross-section contour” – a thin-
walled bar whose cross-sections during load increment are

subject to warping displacement, but maintain the original
shape of section contour;

� A thin-walled bar “with flexible cross-section contour” – a bar
built from flat walls (thin plates) in which, after local or dis-
tortional critical stresses are reached, local deflections of
component plates or displacements of stiffened edges of walls
occur. As a result, the geometry of the cross-section contour of
a thin-walled bar is changed;

� “A thin-walled bar segment” – the section of a bar between
transverse stiffenings (diaphragms, ribs, etc.), which assure a
rigid cross-section contour in place of their location.

� “The constructional system of a thin-walled bar” – the mutual
geometrical arrangement of component plates (walls), trans-
verse stiffenings (diaphragms, ribs), and local and overall
boundary conditions of a thin-walled bar.

The Vlasov theory [1] refers to thin-walled bars with a rigid
cross-section contour. This fact limits the possibility of its appli-
cation to the estimation of the limit load-carrying capacity of
currently used thin-walled bars with a flexible cross-section
contour in which phenomena caused by local or distorsional
buckling of walls occur. It is not possible to analyze post-
buckling load-carrying capacity reserves from the Vlasov theory
because local or distorsional buckling generates change in the
geometry of the cross-section contour. Invariability of the cross-
section contour is the fundamental assumption of the Vlasov
theory [1].
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In practice, we can distinguish three types of sections of thin-
walled bars built from flat walls whose behavior under load
generating normal stresses is shown schematically in Fig. 1. Bars
with a rigid cross-section contour, in which dependences: scosLcr
and scosDcr (Fig. 1b) occur, i.e. bars with a flexible cross-section
contour from the condition of local buckling: sLcroscosDcr or
sLcrosDcrosc (Fig. 1c), and bars with a flexible cross-section

contour from the condition of distortional buckling for which
sDcroscosLcr or s

D
crosLcrosc (Fig. 1d).

The necessity of the distinction of thin-walled bars with
a rigid cross-section contour (Fig. 1b) from thin-walled bars
with a flexible cross-section contour (Fig. 1c,d) under a load
exceeding local or distortional critical stresses has an essen-
tial significance for the correct interpretation of phenomena

Nomenclature

Ainp coefficients of power polynomials
bs; ts width, thickness of a plate (wall s)
BðxÞ bimoment function
Bcr;L; Bcr;R local critical bimoment (“left” – positive, “right” –

negative)
By first yield bimoment
Ds plate flexural rigidity (wall s)
E Young's modulus of elasticity
f ins; f jqs dimensionless, free parameters of deflection function

of a plate (wall s)
G shear modulus of elasticity
i, j, n, q, p natural number subscript
io the number of half-waves of the sine function in the

direction of the plate (or the segment) length
Iω warping section constant
It St-Venant torsion constant
kω coefficient of critical warping stress
ls length of a thin-walled bar segment, length of a plate

(wall s)
Ls work done by external forces
Linjq component elements of the work done by external

forces function
m coefficient which characterizes the longitudinal stress

variation according to (19)
Mt;L; Mt;R load of a concentrated torsional moment (“left” –

positive, “right” – negative)
Mt;cr critical torsional moment from the condition of local

buckling
M1ðxsÞ; M2ðxsÞ moments of elastically restrained longitudinal

edges (No. 1, 2) of the component plate (wall s) in a
thin-walled bar segment

no degree of the polynomial, number of polynomials
U sum of the total potential energy
Vs strain energy of the bending of a plate (wall s)
Vinjq component elements of the bending strain energy

function

ws deflection function of a plate (wall s)
xs; ys; zs Cartesian coordinates of a plate (wall s)
x; y; z Cartesian coordinates of a thin-walled bar segment
Xs longitudinal body forces
Yin power polynomials (9) with previously determined

coefficients Ainp

αs coefficient of stress distribution in the direction of the
width of a plate (wall s)

βðxsÞ; ðβðxÞÞ function of normal stress (or bimoment) distribu-
tion in the direction of the plate (or the segment)
length

κ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIs=EIω

p
flexural – torsional coefficient of a cross-section

χs parameter describing load of a plate (wall s) on the
edge containing the center of local coordinate system
ðys ¼ 0Þ

φ1ðxsÞ;φ2ðxsÞ angles of a component plate's rotation (wall s) on
longidudinal edges (No. 1, 2) at the connection of
adjacent plates

ϕ angle of twist rotation
v Poisson's ratio
ρs; δs geometrical parameters of a cross-section according to

(4)
λps ¼ bs=ts slenderness of a plate (wall s)
sc; st normal stresses (compression, tension)
sω; τω warping stresses (normal, shear)
sLcr ; s

D
cr local buckling stress, distortional buckling stress

sLω;cr critical warping stress from the condition of local
buckling (positive)

ωi sectorial coordinates
ωc a sectorial coordinate corresponding to critical stress

sLω;cr
sE;s Euler's stress for a plate (wall s)
s0 comparative edge stress in the cross-section of a thin-

walled bar
∇2 Laplace's operator
Λ Lagrange's function for a thin-walled bar segment
ψq Lagrange's multipliers
μi multipliers of edge stresses

Fig. 1. Types of sections of thin-walled bars with flat walls (a) distribution of warping normal stresses, (b) rigid cross-section contour, (c) the flexible cross-section contour
from the local buckling condition, and (d) the flexible cross-section contour from the distortional buckling condition.
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