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a b s t r a c t

Because the deformed beam geometry often is the most important information for applications of highly
flexible beams, a geometrically exact beam theory needs to be displacement-based in order to directly
and exactly describe any greatly deformed geometry. Main challenges in geometrically exact beam
modeling are how to describe a beam's large reference-line deformation and cross-sectional rotations
without singularity and how to derive objective directional strains in terms of global displacements and
rotations that contain elastic deformation and rigid-body movement. By comparing with a geometrically
exact displacement-based beam theory this paper shows that theoretical and numerical problems of
other geometrically nonlinear beam theories are mainly caused by: (1) use of independent variables to
account for bending-shear rotations, (2) use of problematic energy-based Green–Lagrange strains in
order to have objective strain measures, and/or (3) use of strain-based formulations in order not to use
problematic Green–Lagrange strains. The theoretical problems include inconsistent governing equations
from energy- and momentum-based formulations, inexistence of material property matrices for the
chosen strain and stress measures, and non-directional stresses. The numerical problems include shear
locking in finite-element analysis, the need of internal nodes and hence more degrees of freedom in
finite-element modeling, singularity of mathematics-based rotational variables, deformed geometry
being obtained by approximate post-processing numerical integration, and difficult to match secondary
(force) variables with deformed conditions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A geometrically exact beam theory can exactly describe a beam's
arbitrarily large deformation and is needed for many engineering
applications [1–8]. Many highly flexible beam-like medical devices
and implants are used for today's surgical and medical treatments
of different diseases [2,3]. Even in molecular biology, nonlinear
beam theories are needed for modeling of supercoiling of DNAs in
order to understand how it affects physical, chemical and biological
properties of a molecule [4]. In petroleum engineering, a typical
drillstring has a length around 5000 m and a length to diameter
ratio around 105 [5], which is a slender beam even thinner than
a human hair. Moreover, movie industry is developing toward
natural looking dynamic animations using physics-based modeling
and analysis, and beam dynamics plays a major role in such
applications [6–8]. In order to advance theoretical structural
mechanics for today's engineering and science applications, it is
important to have a high-fidelity geometrically exact beam theory
that can be used to investigate influences of high-order geometric
nonlinearities on static and dynamic characteristics of highly

flexible beam-like structures. However, challenges exist and most
of the geometrically nonlinear beam theories in the literature are
incapable of exact description of large beam deformations without
theoretical and/or numerical problems [9–26]. Moreover, because
the deformed geometry often is the most important information for
engineering applications of flexible beams, a geometrically exact
beam theory should be presented in terms of displacements,
instead of stresses or strains [1,26].

Fig. 1 shows that a beam theory is to describe the deformed
reference line and the deformed cross-section of a beam. Hence the
three major tasks in modeling highly flexible beams are: (1) how to
describe the reference-line deformation, (2) how to describe the
cross-section deformation, and (3) how to derive directional objec-
tive strains in terms of global displacements and rotation variables.
The reference-line deformation is independent of the cross-section
deformation and can be fully described by the global, absolute
displacements of points on the reference line [1]. The cross section
is crooked mainly by out-of-plane shear warping. To better describe
the cross-section deformation Timoshenko's beam theory improves
the Euler–Bernoulli beam theory by accounting for assumed first-
order transverse shear deformation, and third- and other higher-
order beam theories improve Timoshenko's beam theory by
accounting for the non-uniform distributions of transverse shear
strains over the cross-section [1]. Moreover, layerwise higher-order
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shear theories account for the non-uniform distributions of trans-
verse shear strains through the layers of a composite laminate and
the continuity of transverse shear stresses at the interface of any
two adjacent layers, and quasi-3D beam theories improve layerwise
higher-order shear theories by accounting for the transverse normal
stresses caused by Poisson's effect and transverse normal loads [1].
Shear rotations are independent of bending rotations, and they may
result in different acoustic and optical vibration modes [27].
Timoshenko's beam theory [28] is an order-deficient beam theory
because it combines both bending and shear rotations into one
bending-shear rotation angle [29]. This order deficiency results in
the shear locking problem in finite-element analysis of thin beams,
as shown later in Section 3.2.

For composite and built-up beams, some non-classical effects
may become significant due to material anisotropy, asymmetry of
the cross section, and/or different Poisson's ratios over the cross
section. These effects include transverse shear deformation, tor-
sional warping, inplane warpings due to bending and extension,
transverse normal stresses, in-plane shear stresses, warping
restraints at two ends, and the free-edge effect, and they cause
significant in-plane and/or out-of-plane warping displacements
and a 3D stress state. Hence, 3D finite element modeling may be
the only way to solve dynamic problems of general composite
beams, which is too expensive in order to achieve certain accuracy.
Because in-plane and out-of-plane warpings are relative displace-
ments with respect to the deformed cross section and are much
smaller than global displacements, inertial forces caused by
warpings are negligible. However, because these warpings offer
extra degrees of freedom for the cross section to deform, they
significantly affect the global stiffnesses of a beam. A combination
of St. Venant's warping solutions derived from linear elasticity, and
a 1D nonlinear beam model is natural and can account for 3D
stress effects. More specifically, Berdichevskii [10] stated that the
geometrically nonlinear problem of elastic beams can be
decoupled into a nonlinear 1D problem and a linear 2D sectional
problem. Consequently, one can neglect inertia forces due to in-
plane and even out-of-plane warpings and only consider warpings
in the calculation of elastic constants of beams. In other words,
a 1D nonlinear beam model with global stiffnesses determined
from a linear, static, 2D sectional analysis of warpings is a general
and practical approach in solving nonlinear anisotropic beam
problems [13,23]. Significant contributions toward accurate esti-
mation of cross-sectional warpings and stiffnesses by 2D finite-
element analysis of cross sections of isotropic and anisotropic
beams were presented in [30–32]. Most of these geometrically
nonlinear beam theories with cross-sectional stiffnesses obtained
from 2D sectional analysis use bending-shear rotation angles and
treat them as independent of global displacements, and hence
they are prone to shear locking and singularity problems, as
shown later in Sections 3.2 and 3.4.

A geometrically exact displacement-based beam theory enables
nonlinear inverse design analysis of flexible beams, as shown later

in Section 3.5. Moreover, a geometrically exact displacement-
based beam theory is also valuable for investigating the boundary
between linear and nonlinear response regions of a beam under-
going small- and moderate-amplitude vibrations. For example,
recent research on system identification using advanced time–
frequency analysis indicates that geometric nonlinearity can affect
structural vibration characteristics even if the structure undergoes
small-amplitude vibration with certain types of boundary/loading
conditions [33]. For a regular on-earth 1D or 2D structure, its
dynamic response is often pre-assumed to be linear if the vibra-
tion amplitude is less than its thickness. In perturbation analysis of
geometrically nonlinear structures, governing differential equa-
tions are expanded into polynomials in terms of displacement
variables and then the highest power of displacement variables is
defined as the order of nonlinearity [34]. This also implies the use
of vibration amplitude to define the magnitude of nonlinearity.
However, it is more appropriate to define linear response to
a harmonic excitation by giving a limit on the response's contin-
uous frequency bandwidth instead of the vibration amplitude
because nonlinear response can be due to a large vibration
amplitude, boundary constraints, loading conditions, and other
factors [33]. Different combinations of these factors may result in
different nonlinear responses even if the displacement is smaller
than the structure's thickness. For example, a hinged-hinged beam
behaves more nonlinearly than a clamped-free beam under the
same magnitude of vibration amplitude [33]. Moreover, a high-
frequency mode starts to behave nonlinearly at an amplitude
smaller than that of a low-frequency mode due to high curvatures.
On the other hand, finite-element analysis using exact nonlinear
strain–displacement relations shows that a cantilevered thin
isotropic plate subject to a transverse corner load can behave
linearly even when its transverse displacement is more than 10
times its thickness, but it behaves nonlinearly if von Karman
strains (i.e., truncated nonlinear strain–displacement relations) are
used (see Fig. 6.42 of [1]). Hence, geometrically exact high-fidelity
modeling without Taylor expansion is really needed in order to use
such structural theories for accurate static/dynamic analysis and
for development of advanced techniques for inverse design,
system identification, damage inspection, and health monitoring
of structures.

In this paper, we first summarize an advanced total-Lagrangian
geometrically exact displacement-based beam theory [35] that can
exactly describe the reference-line deformation and cross-
sectional rotations under any magnitude of displacements and
rotations without singularity and has exact, explicit strain–dis-
placement relations. Then this nonlinear beam theory is used to
compare with and reveal, by in-depth derivations and reasoning,
theoretical and numerical problems of other nonlinear beam
theories that intend to be geometrically exact in the literature.

2. Geometrically exact displacement-based beam theory

To reveal problems of different geometrically nonlinear beam
theories in the literature we summarize here a truly geometrically
exact displacement-based beam theory [35]. An initially curved
beam undergoing large deformation requires three coordinate
systems to describe its movement, as shown in Fig. 2a. The abc
is a fixed rectangular coordinate system used for reference, the xyz
is a orthogonal curvilinear coordinate system used to describe the
undeformed beam geometry, and the ξηζ is a moving orthogonal
curvilinear coordinate system attached to the deformed beam. Let
ia, ib and ic be the unit vectors of the abc system; ix, iy and iz, and
be the unit vectors of the xyz system; and i1, i2 and i3, be the unit
vectors of the ξηζ system. Moreover, u, v and w represent the
global, absolute displacements of the observed reference point O

Fig. 1. A beam model consisting of a reference line and a cross section.
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