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a b s t r a c t

This paper aims at finding the optimal folding of open cold formed steel cross sections under
compression. Starting with a fixed coil width, a design point in the design space is defined by a vector
of turn angles at a set of points along the coil width. Generalized Finite Strip Method (FSM) and Direct
Strength Method (DSM) are combined to calculate the nominal compressive strength for a given cross
section (a given design with a given set of turn angles). The design space is searched primarily via a
stochastic search algorithm, Genetic Algorithm (GA). The near-optimal folding of the cross section is then
fine-tuned through a few steps of the gradient descent optimization. To arrive at practical designs the
optimization problem is augmented with constraints on the geometrical properties of the cross section.
The optimal cross sections are found to have compressive capacities that are higher than the original
designs by a factor of more than three in many cases. The shape of the optimal folding is shown to be
greatly influenced by the choice of boundary condition. Strategies for identification of instability modes,
a necessary first step to using DSM, are also discussed in detail.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures are very common in engineering struc-
tures. Their application ranges from tiny machine parts to large
structures such as fuselages, storage vessels and cooling towers.
Among thin-walled structures, those that are composed of cold-
formed steel (CFS) members have become widespread in the
practice of structural engineering due mostly to the increasing
demand for economical and efficient structural elements. Recent
theoretical developments [1–3] along with the introduction of
devoted open source software (e.g. CUFSM [4]) for the design and
analysis of such CFS members have also lead to a more extensive
usage of cold-formed steel in building industry, especially in the
design and construction of low rise buildings.

Cold formed steel has many advantages over other construction
materials. CFS members are lightweight. They weigh up to 35–50%
less than their wood counterparts. High strength and stiffness to
weight ratio is another advantage. This makes CFS members
economical and the same time very easy to erect and install
(almost no framework is needed). CFS is very durable, is not
combustible, is easy to transport and handle, and can be easily
recycled [5]. One of the most desirable features of CFS members,
however, is that they may be shaped (cold-bent) to nearly any
open cross section. This allows for the use of formal optimization
strategies to find optimal shapes for the members’ cross sections.

A number of scholars have conducted research on optimal cold-
formed steel cross section selection and design. Lu [6] embedded
CUFSM in a genetic algorithm routine to optimize Z-shape and
Σ-shape CFS purlins subjected to geometrical and strength con-
straints provided in Eurocode 3 [7]. Liu et al. [8] used the Direct
Strength Method (DSM) [9,10] and CUFSM and exploited Bayesian
classification trees to find a cross section with largest nominal
strength. Lee et al. [11,12] used a micro-genetic algorithm and
optimized cold-formed steel channel beams under uniformly
distributed loads as well as lipped channel columns under axial
compression and proposed optimum design curves based on
different geometrical parameters. In a direct follow-up to this
work, Leng et al. [13] explored three optimization algorithms
including steepest descent, genetic algorithm and simulated
annealing to find cross-sections with maximum compressive
strength for simply supported cold-formed steel columns of
different lengths. Buckling loads were calculated using CUFSM
and the nominal compressive strength was derived following
DSM. A cross section with constant coil width was selected and
discretized into equal length strips. The turn-angles between
adjacent strip elements were used as design variables to find the
optimal shape of the cross section. Except a geometrical crossing
constraint, the design space was searched freely and the results
were presented for long (16 ft) and short (4 ft) columns. Leng et al.
has recently extended this work to optimization for major axis
flexural strength as well as optimization under a number of
manufacturing constraints including a limit on the number of
rollers used to fold the cross section [14]. Gilbert et al. [15,16] have
also proposed a self-shape optimization strategy where they adopt
GA operators for the purpose of minimizing the cross section
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area (weigh) of simply supported CFS columns with different
lengths.

Cold-formed steel members are usually thin-walled and have
open cross sections. They are therefore prone to local, distortional,
and global (Euler) buckling [1]. The goal of this work is to examine
the role of boundary conditions on optimal column cross sections,
i.e. cross sections that maximize compressive capacity of a column
with a given length, coil width, and sheet thickness. This study is
therefore an extension of the work in [13] in the sense that it
covers different scenarios for the boundary conditions of the
column. In addition, we discuss the choice of longitudinal basis
functions in the context of FSM, and some computational strate-
gies used to explore different instability modes of a given cross
section. As far as the optimization algorithm is concerned, the
available options are algorithms based on formal mathematical
programming (e.g. steepest descent or gradient based algorithms),
or algorithms based-on principles of stochastic search. Our com-
putational experience (see also [13]) shows that gradient descent
based solutions are highly sensitive to the initial design, but are
more practical (e.g. symmetrical). The stochastic search algo-
rithms, on the other hand, are computationally expensive but do
a better job in exploring the design space while being relatively
insensitive to the initial design. In this paper we choose a some-
what hybrid approach. We first start exploring the design space
via a stochastic search algorithm. Genetic Algorithm (GA), a
general-purpose, derivative-free, stochastic search algorithm is
used here. To arrive at practical designs we put constraints on
the geometrical properties of the optimal cross section. We finally
refine the near-optimal folding of the cross section through a few
steps of the gradient descent optimization.

The organization of this paper is as follows. In Section 2 the
basics and formulation of FSM, including the choice of longitudinal
shape functions, along with strategies used to identify the critical
buckling modes and their associated buckling loads (beyond those
appropriate for simply supported columns; see [9]) are discussed.
Section 3 discusses how finding the optimal cross section is
formulated in the form of an optimization problem and lays out
the framework used to solve the problem. In Section 4 optimal
cross sections for columns under uniform compression are pro-
vided and critically analyzed. Different column support conditions
will be considered and the impact of the controlling stability mode
on the optimal design and its strength are explored. Finally,
Section 5 is devoted to concluding remarks.

2. Finite strip method (FSM) for general boundary conditions

2.1. Basics and formulation

FSM is a semi-analytical method, in which a (prismatic) thin-
walled member is discretized into a number of predefined long-
itudinal narrow strips (see Fig. 1).

The interpolating functions in the transverse direction are
assumed to be polynomials while judiciously chosen trigonometric
functions are used in the longitudinal direction. The computa-
tional efficiency that results from circumventing the need for
discretization in the longitudinal direction comes in handy in
cases where repetitive analyses (such as those needed in an
optimization context) must be performed. The other advantage is
the easy (more straightforward) identification of instability modes
which is an essential part of many design methodologies such as
Direct Strength Method (DSM). We review here the very basics of
FSM as applied in stability analysis of CFS members. The reader
interested in more details is referred to the well-known text by
Cheung and Tham [17], and numerous papers and technical
reports in the literature (see [3] for example).

The displacement field vector within the finite strip,
u¼ ½u v w�T , is approximated in the form of the following series:

u¼ ∑
M

p ¼ 1
Npdp ð1Þ

The shape function matrix and nodal displacement vector,
expressed in terms of their uncoupled membrane and flexural
parts, are as follows:

Np ¼ Np
uv

0

0
Np

wθ

" #
; dp ¼

dp
uv

dp
wθ

" #
ð2Þ

The components of the above matrices involve the product of
the usual linear and cubic shape functions, and the pth long-
itudinal basis function satisfying the boundary condition in place,
which is denoted by Yp (see [4] for more details). Adopting Love's
postulates [18], one assumes the following form for the strains:

ε¼ εlþεn ð3Þ

where εl and εn are linear and nonlinear components of strain
respectively. These strains can be expressed as a summation of the
membrane and flexural parts:

εl ¼ εlmþεlb; εn ¼ εnmþεnb ð4Þ

with subscripts m and b denoting membrane and flexural (bend-
ing) actions. Plugging Eq. (1) into (4) and substituting the results
into the total potential energy functional:

Π¼ 1
2

Z
rTεldV�

Z
rT0εndV ð5Þ

where rT¼(sx,sy,τxy), rT0 ¼ ð0; �T=t;0Þ, and T is the constant edge
traction (force per unit length, see Fig. 1), one can identify the
elastic and geometric stiffness matrices for a finite strip. It turns
out that the elements of these matrices are functions of the
following integrals:

I1 ¼
Z a

0
YpYqdy; I2 ¼ I3 ¼

Z a

0
Y ″
pYqdy;
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Fig. 1. Finite strip discretization, DOFs, local axes, and external edge traction for a strip.
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