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a b s t r a c t

By considering the effect of stress waves in a Hamiltonian system, this paper treats dynamic buckling of

an elastic cylindrical shell which is subjected to an impact torsional load. A symplectic analytical

approach is employed to convert the fundamental equations to the Hamiltonian canonical equations in

dual variables. In a symplectic space, the critical torsion and buckling mode are reduced to solving the

symplectic eigenvalue and eigensolution, respectively. The primary influence factors, such as the

impact time, boundary conditions and thickness, are discussed in detail through some numerical

examples. It is found that boundary conditions have limited influence except free boundary condition

in the context of the scope in this paper. The localization of dynamic buckling patterns can be observed

at the free end of the shell. The new analytical and numerical results serve as guidelines for safer

designs of shell structures.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cylindrical shells have been widely used as one of the basic
components in many types of engineering structures. To improve the
structural reliability and safety, it is of great significance to clarify the
dynamic stability of cylindrical shells under various impact loads.
Although dynamic buckling of cylindrical shells under an axial impact
has been studied extensively, by contrast, dynamic torsional buckling
of cylindrical shells receives relatively little attention due to the
inherent mathematical difficulty. In some early theoretical studies,
only approximate solutions were obtained for some special cases,
such as that by Leyko and Spryszynski [1] in which dynamic buckling
of a cylindrical shell subjected to a time-dependent torsion was
analyzed by using an approximate energy method. Subsequently, by
using the energy criterion proposed by Ru and Wang [2], Wang et al.
[3] investigated dynamic stability of a plastic cylindrical shell
subjected to impact torsion. In this analysis, the rigid-plastic linear
hardening mode was adopted and the critical impact velocity was
discussed in detail. More recently, Sofiyev et al. [4–6] conducted
similar research for some new high-performance materials. Galerkin’s
method combined with the Ritz type variation method or Lagrange–
Hamilton type principle was applied to estimate the effect of
configurations of constituent materials. To explore a different
approach with respect to those published approximate methods, a
general perturbation method was developed by Wang et al. [7] to
study the impact torsional buckling for an elastic cylindrical shell
with an arbitrary imperfection. The result showed that imperfect
geometry significantly influences the static torsional buckling load. A

brief review on the dynamic behavior of simple structures was
reported by Jones [8] in 1989. A few excellent monographs which
discuss the various aspects of dynamic bucking can be referred to
Simitses [9] and Lindberg and Florence [10].

There exist some experimental studies in this regard [11,12].
A survey shows that increasing post-buckling deformation always
begins to take place at an initial linear stage, especially for axial
impact buckling of cylindrical shells [13,14]. Hence, it offers
a good opportunity to capitalize this fact and to apply the small
deformation theory for understanding some dynamic buckling
phenomena. Accordingly, the study of impact torsional buckling
of cylindrical shells can be converted to a bifurcation problem by
studying the propagation of stress waves [15,16]. The buckling
deformation in the disturbed region can be obtained based on the
bifurcation buckling theory. Unfortunately, only some roughly
theoretical analyses are conducted by authors and approximate
solving methods are employed. Research works with rigorous
analytical solutions to the titled problem for different boundary
conditions have been limited.

For static torsional bucking, Yamaki and Kodama [17] pre-
sented some accurate solutions by directly integrating the funda-
mental equations and eight symmetric boundary conditions were
treated in the study. However, the solution method cannot
constitute a rigorous approach and it cannot provide a uniform
analysis process. In short, most of the analytical methods avail-
able can be regarded as some variations of the Lagrangian system
approach. The basic equations are expressed as some higher-
order partial differential equations and they are usually solved by
assuming some shape functions in one or two spatial dimensions.
This approach is commonly known as the semi-inverse approach.

In an attempt to overcome the shortcomings of the semi-
inverse method, Zhong [18] presented a revolutionary solution
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methodology, the symplectic analytical approach, for solving
some basic problems in solid mechanics. Through the Legendre
transformation, the governing equations are transformed into
lower-order Hamiltonian canonical equations in dual variables.
Later, Xu et al. [19] established a new symplectic system to
investigate dynamic torsional buckling of clamped cylindrical
shells. Nevertheless, the system is merely effective for a shell
based on the Timoshenko’s model and it is not applicable to treat
local buckling problems. To substantiate the unknown research
area, therefore, this paper develops a new symplectic system to
analyze dynamic torsional buckling of cylindrical shells with
various boundary conditions by considering the stress wave
propagation based on Donnell’s shell theory. Using numerical
examples, some interesting insights into this problem are dis-
cussed in detail.

2. Basic equations

An elastic cylindrical shell with radius R, thickness h, length l,
Young’s modulus E, Poisson’s ratio u and material density r,
subjected to an impact torque is illustrated in Fig. 1. Adopting a
circular cylindrical coordinate system, the constitutive relations
are
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where N¼{Nx, Ny, Nxy}
T and M¼{Mx, My, Mxy}

T are the stress
resultants and stress couples per unit length, respectively. The
elastic coefficient matrixes are given by
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The geometric equations relating the strain vector e¼{ex, ey,
exy}

T and curvature vector v¼{kx, ky, kxy}
T with the displacements

are given by
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Introducing a stress function F, we have
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The Lagrange functional, which is dependent on the incre-
mental displacements (u, v, w) and stress function F, consists of

the elastic potential energy, potential energy due to external load
and kinetic energy as [19]
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where D¼Eh3/[12(1�u2)] and t is the time. Then, the Lagrange
density function can be obtained through the variational principle
and integration by parts as
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where Nxy
0
¼ ~T xy= 2pR2


 �
is the torsion stress resultant of the pre-

buckling membrane state. Using the Hamiltonian principle d ~L ¼ 0,
the governing equations for this Donnell’s shell theory can be
obtained as
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is the Laplacian operator.

3. Hamiltonian system and dual equations

For simplicity, the following dimensionless terms are defined:
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p
is the wave velocity [19]. By defining
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the dimensionless Lagrange density function can be expressed as
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Introducing a vector q¼{q1, q2, q3, q4}T
¼{W, x, F, c}T, the

corresponding dual vector is given by
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Fig. 1. Geometry for a cylindrical shell subject to an impact torque.
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