Sleep Medicine Reviews 17 (2013) 273-284

Contents lists available at SciVerse ScienceDirect

Sleep Medicine Reviews

journal homepage: www.elsevier.com/locate/smrv

Shift work and cancer risk: Potential mechanistic roles of circadian disruption, light at night, and sleep deprivation

Erhard L. Haus^{a,*}, Michael H. Smolensky^b

^a Department of Laboratory Medicine & Pathology, University of Minnesota and HealthPartners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA
^b Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA

ARTICLE INFO

Article history: Received 11 April 2012 Received in revised form 15 August 2012 Accepted 16 August 2012 Available online 5 November 2012

Keywords: Shift work Sleep deprivation Circadian disruption Melatonin Cancer

SUMMARY

Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Invention of the light bulb by Edison in 1879 and subsequent development of electric generating and distribution systems significantly changed the lifestyle of human beings through extension of activity into the night, thereby making prevalent night work (NW), involving today some 15-20% of the workforce of industrialized countries. In fact, surveys indicate only $\sim 25\%$ of the workforce is employed in "regular" daytime ($\pm 08:00$ to $\pm 17:00$ h) Monday to Friday schedules.¹ The nocturnal activities demanded by shift work (SW) schedules disrupt the natural sleep-wake cycle and circadian time organization; expose workers to artificial light at night (LAN), an abnormal biological time of light exposure; cause irregular eating patterns; and alter social and family life routines.² Apart from performance decrements and elevated vulnerability to accidents, NW and SW are associated with increased risk for various long-term health effects, ranging from sleep disorders to metabolic conditions and cardiovascular disease (CVD), among others.^{3–5}

Of particular concern are the findings during the past decade of several epidemiologic studies revealing slightly to moderately increased risk for breast, prostate, colon, and endometrial

epithelial malignancies plus non-Hodgkin's lymphoma in longtime NWers (night workers) and SWers (shift workers).^{6–8} These suggestive, but not yet conclusive, epidemiologic findings are bolstered by extensive laboratory animal research. i) Laboratory animal studies simulating rotating SW schedules and transmeridian flights that cause repeated disruption of the circadian time organization favor development of breast cancer in female animals and also accelerated growth of transplanted non-endocrine tumors.^{9,10} ii) Experimental manipulations – pinealectomy^{11,12} or bright light during the subjective night¹³ – that suppress the pineal hormone melatonin (MEL) promote the development and growth of malignancies, while experimental manipulations that elevate MEL – by its administration at certain circadian times, exposure to prolonged dark spans,¹⁴ blinding,¹² and up-regulation of melatonin receptor type 1 $(MT1)^{15}$ – favor decrease in breast cancer rate and growth of transplanted tumors in animal models, which is consistent with the observation of decreased breast cancer rate in blind women.¹⁶ Against this background of laboratory animal and human epidemiologic findings, in October 2007 the World Health Organization International Agency for Research on Cancer (IARC) convened in Lyon, France a working group of 24 scientists to critically address the concern of the potential association between shift work and cancer risk. The conclusions of the working group summarized in Monograph 98⁸ were: i) evidence is limited in humans for the

sleepmedicine

霐

^{*} Corresponding author. Tel.: +1 6512549630; fax: +1 6512542741. *E-mail address*: Erhard.X.Haus@HealthPartners.com (E.L. Haus).

^{1087-0792/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.smrv.2012.08.003

_ .

L	Abbrevi	ations List	L	light
l			LAK	lymphokine activated
l	13-HOD	E 13-hydroxyoctadecadienoic acid	LAN	light at night
l	aMT6s	6-sulphatoxymelatonin	LD	light-dark
l	ATM	ataxia teleangiectasia mutated	MCF-7	Michigan Cancer Found
l	Bmal1	brain and muscle aryl hydrocarbon receptor nuclear	Mdm2	murine double minute
l		translocator [ARNT]-like	MEL	melatonin
l	BMI	body mass index	min/d	minutes/day
l	BRAC1	breast cancer1, early onset human caretaker gene	mPER2 ^{m/}	^m Per2 mutation
l	$CD8^+$	cytotoxic and memory T-cells	MT1	melatonin receptor typ
l	CDC2 ki	nase cell division cycle 2 kinase	MT2	melatonin receptor typ
l	CLOCK	circadian locomotor output cycles kaput	MTCL	murine breast cancer-o
l	c-Myc	myelocytomatosis viral oncogene human recombinant	NF-kB	nuclear factor kappa-li
l	CpG	cytosine bound by phosphodiester bond to guanine		B cells
l	CRP	C-reactive protein	NK	natural killer cell
l	Cry	cryptochrome genes	NSs	night shifts
l	CVD	cardiovascular disease	NW	night work
l	D	dark	NWers	night workers
l	DNA	deoxyribonucleic acid	p53	protein 53 or tumor pr
l	DW	day work	Per	period genes
l	DWers	day workers	RASSF1A	Ras association domain
l	E2	estradiol	Rev-erba	nuclear receptor subfa
l	ERα	estrogen receptor α	RNA	ribonucleic acid
l	ERλ	estrogen receptor λ	RORa	retinoid-related orpha
l	ESR1	ERα encoding gene	SCN	suprachiasmatic nucle
l	G0/G1	transition from resting phase to phase G1 of the cell	SEEM	selective estrogen enzy
l		cycle	SERM	selective estrogen-rece
l	G1/S	transition from G1 to DNA synthesis of the cell cycle	sICAM	soluble intercellular ad
l	G2/M	transition from G2 phase of mitotic cycle to mitosis	siRNA	small interfering RNA
l	Gadd 45	α growth arrest and DNA damage-inducible, alpha	SW	shift work
l		protein	SWers	shift workers
l	h/d	hours/day	Th1	T-helper1 cells and pro
l	HER2/n	eu human epidermal growth factor receptor 2	Th2	T-helper2 cells and ant
I	hPER2	human period 2 clock gene	TNFα	tumor necrosis factor a
I	IARC	International Agency for Research on Cancer	Wee1	nuclear kinase belongi
I	IFNγ	interferon-gamma		protein kinases
L	IL	interleukin		

carcinogenicity of SW that involves NW; ii) there is sufficient experimental evidence in laboratory animals for the carcinogenicity of LAN; and iii) SW that involves circadian disruption is probably carcinogenic in humans (as a group 2A carcinogen).

The potential mechanism of SW-associated cancers is complicated, involving many biological processes and systems, among others, sleep disruption, LAN, circadian disruption, and lifestyle factors. The purpose of this article is to review and integrate the relevant findings of several different biological disciplines – chronobiology, sleep medicine, immunology, endocrinology, nutrition/ biochemistry, and molecular biology – relative to the possible mechanisms underlying increased cancer risk, particularly breast cancer, of female SWers.

Circadian timekeeping

An understanding of the mechanisms of biological timekeeping is necessary to discuss the disrupting and detrimental effects of NW and rotating SW. Circadian (~24-h) rhythms are orchestrated by cellular oscillators found in most, if not all, nucleated cells of the body that regulate practically every biological process and function in a time-specific manner via various clock-controlled genes.^{17–19} In mammals, in which the expression of 2–10% of all genes is circadian rhythmic,²⁰ the circadian system

L	light		
LAK	lymphokine activated killer cell		
LAN	light at night		
LD	light-dark		
MCF-7	Michigan Cancer Foundation – 7		
Mdm2	murine double minute oncogene		
MEL	melatonin		
min/d	minutes/day		
mPER2 ^m	mPER2 ^{m/m} Per2 mutation		
MT1	melatonin receptor type 1		
MT2	melatonin receptor type 2		
MTCL	murine breast cancer-derived cell line		
NF-kB	nuclear factor kappa-light-chain-enhancer of activated		
	B cells		
NK	natural killer cell		
NSs	night shifts		
NW	night work		
NWers	night workers		
p53	protein 53 or tumor protein 53		
Per	period genes		
RASSF1/	A Ras association domain-containing protein 1		
Rev-erb	x nuclear receptor subfamily 1, group D, member 1		
RNA	ribonucleic acid		
RORa	retinoid-related orphan receptor, alpha		
SCN	suprachiasmatic nucleus		
SEEM	selective estrogen enzyme modulator		
SERM	selective estrogen-receptor modulator		
SICAM	soluble intercellular adhesions molecule		
SIRNA	small interfering RNA		
SVV	SNIIT WORK		
Svvers	SHIT WORKERS		
1111 Tha	The here a colle and anti-inflammatory Type 1		
	tumor pogrocio factor alpha		
TINFO Maga1	tumor necrosis factor alpha		
vveei	nuclear kinase belonging to the ser/init tamily of		
	protein kinases		

is organized in a hierarchical manner: a master oscillator, the paired suprachiasmatic nucleus (SCN) of the hypothalamus, regulates downstream peripheral oscillators via humoral, endocrine, and neural signals, resulting in a coherent time organization of bodily processes for optimal performance.^{17,18,21} The central oscillator is paced, i.e., externally synchronized, with the periodic-astronomic surrounding mainly by time cues provided by the environmental light (L)–dark (D) cycle, conveyed through non-visual, photic retinal ganglion cells²² most sensitive to the blue-violet (446-484 nm) spectrum. The predictable-in-time alteration of environmental L and D every 24 h provides circadian time information, and the duration of the daily L relative to the D span over the course of the year conveys circannual (seasonal) time information. Some peripheral oscillators, in addition, are responsive to non-photic synchronizers, e.g., time pattern of food uptake, which under certain circumstances may become dominant.23

Clock mechanisms in the SCN and peripheral organs are similar at the molecular level. Circadian oscillators consist of a network of transcriptional-translational feedback loops that drive ~ 24 -h rhythmic expression patterns of the core clock components.^{17,18} In the primary feedback loop, the driving elements are the transcription factors CLOCK (circadian locomotor output cycles kaput) and Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator [ARNT]-like), which heterodimerize and initiate Download English Version:

https://daneshyari.com/en/article/3091590

Download Persian Version:

https://daneshyari.com/article/3091590

Daneshyari.com