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a b s t r a c t

An L frame made up by beam and column having channel cross sections, has been analyzed in a previous
work by two of the authors [14]. Depending on the aspect ratio and the joint configuration, it has been
proved that the structure can exhibit two simultaneous buckling modes. Here using the asymptotic
theory of elastic bifurcation that takes into account mode interaction, the initial slope of the bifurcated
paths has been determined. Three cases of joint configurations, which are the more common used in
welded connections, have been considered. For each case three admissible bifurcated paths have been
found. Two of them show a slope having the same order of magnitude of the ones found in the absence of
mode interaction while the remaining exhibits a slope largely steepest. Selecting, for each joint case, the
bifurcated path with the higher slope and between them the smallest one, it is found that it is associated
to the path which bifurcates at the higher critical load. This means that the stiffer structure is also the less
imperfection sensitive. Finally for each one of the cases studied, the effect of initial imperfection has been
considered and the real load carrying capacity of the frames has been determined. Finally some results
have been compared with those obtained using the FE code ABAQUS.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a recent paper [14] which henceforth will be referenced as
[RV], the authors have studied the effects of warping on the
postbuckling behavior of frames made up by thin walled beams
with channel cross sections.

The analysis has been focused on the behavior of a family of L
frames obtained by varying the ratio L1=L2—L1,L2 being the lengths
of the beam and the column, respectively—for three different joint
configurations.

It has been found that, when the ratio L1=L2 approaches a
precise value—which depends on the joint configuration—the first
two critical loads come to coincide.

Fig. 7 of [RV]—that is reported as Fig. 3 in this paper—shows
that, in those circumstances, the initial slope of the bifurcated
paths tends to increase very rapidly.

Now, as those results have been obtained by means of a
standard bifurcation analysis—that is assuming that each buckling
load has multiplicity n¼1 and different buckling loads are suffi-
ciently far one from another—they must be considered unreliable.

On the other hand it is well known that, when two (or more)
critical loads coincide or are very close, correct results can be

obtained by using an appropriate modification of the asymptotic
method.

The aim of this paper is to refine the analysis performed in [RV]
by carrying out an investigation on the behavior of the structure
when the first two buckling loads coincide. This is done using the
mode interaction theory proposed by Koiter [7] in the form in
which as been recast by Budiansky [3].

The results obtained show that mode interaction can lead to a
significant increase of the initial slope of the bifurcated paths, as
usually happens in these circumstances (see e.g. [10,12,4]).

In order to assess how this slope is related to the imperfection
sensitivity of the structure, the analysis has been widened consider-
ing the effect of small initial imperfections on the frame behavior.

The results obtained show that the occurrence of mode inter-
action cause a sensible erosion of the load carrying capacity of the
structure that, in some cases, is found to be greater than 30%.

A brief discussion on the comparison between the results
obtained by means of the asymptotic analysis and the ones found
using the path-following method implemented in the FE code
ABAQUS, is done.

2. A direct one-dimensional model for thin-walled beams

In this sectionwe give a short account of the 1Dmodel adopted in
the analysis. For more details, the reader is referred to [RV] and [17].
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Let us consider a plane cross-section and denote by o and c its
centroid and shear center, respectively. We can think to ortho-
gonally attach a section to each point of a straight line of length ℓ,
that we call the beam axis. In particular, we consider
the cases in which the axis is the line of the centroids or, alter-
natively, the line of the shear centers. We fix orthogonal cartesian
co-ordinates with x1 parallel to the beam axes and a consistent
ortho-normal right-handed vector basis ði1,i2,i3Þ. Suitable strain
measures [13,11] are

E¼ R⊤R′¼ χ1i2∧i3þχ2i3∧i1þχ3i1∧i2,

eo ¼ R⊤p′o−q′o ¼ ε1i1þε2i2þε3i3,

ec ¼ R⊤p′c−q′c ¼ eoþEc¼ ε1ci1þε2ci2þε3ci3
¼ ðε1þχ2c3−χ3c2Þi1þðε2−χ1c3Þi2þðε3þχ1c2Þi3,

α,η¼ α′, ð1Þ
where c¼ c−o¼ c2i2þc3i3; poðx1,tÞ, pcðx1,tÞ are the vector-valued
functions describing the present placements of the axes given by
qoðx1Þ and qcðx1Þ in the reference shape; Rðx1,tÞ is the proper
orthogonal tensor-valued cross-sections rotation from the refer-
ence to the present shape; and αðx1,tÞ is a scalar-valued function
that we consider as a coarse descriptor of warping. Besides, χ1
stands for the torsion curvature (twist) and χ2, χ3 for the bending
curvatures; ε1 is the elongation of the centroidal axis, ε2, ε3 are the
shear strains between this axis and the cross-section planes; ε1c ,
ε2c, ε3c , are the same quantities referred to the axis of the shear
centers.

The displacement of the points belonging to the centroidal and
shear center axes together with the rotation are given the follow-
ing component form:

u¼ po−qo ¼ u1i1þu2i2þu3i3
uc ¼ pc−qc ¼ u1ci1þu2ci2þu3ci3

R¼ R3R2R1 ð2Þ

where R1 is a rotation of amplitude θ1 around i1; R2 is a rotation of
amplitude θ2 around R1i2; R3 is a rotation of amplitude θ3 around
R2R1i3.

By substituting (2) in (1) one obtains nonlinear strain–displa-
cement relationships that we synthetically refer to in the form

ϵ¼ eðuÞ ð3Þ
We assume that the beam is homogeneous, nonlinearly hyper-
elastic, and that its elastic energy density, φ is

φ¼ 1
2 aε

2
1þ1
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2
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Using (1) we can make the derivative of φ with respect to the

strain components, ε1c , ε2c, ε3c , χ1, χ2, χ3, α, η, obtaining the stress
measures reported in (7) of [RV].

Here we want just to recall that with Q1, Q2, Q3, we denote the
normal and shear forces applied at the shear center, S1, S2, S3, are
the twisting couple and the bending torques, evaluated with
respect to the shear center, τ and μ are the bishear and bimoment,
respectively. It is also worth noting that the constitutive relation-
ships obtained, keep into account the couplings between exten-
sion and torsion, bending and torsion, warping and torsion,
respectively [21,9,22].

In this way the virtual work density of the stress, reads

δφ¼ φ′δϵ¼Q1δε1cþQ2δε2cþQ3δε3cþS1δχ1þS2δχ2þS3δχ3þτδαþμδη

ð5Þ
where the prime denotes derivative of each function with respect
to its own argument. Now, by putting

s¼Q1i1þQ2i2þQ3i3
S¼ S1i2∧i3þS2i3∧i1þS3i1∧i2 ð6Þ

and using Eq. (5), we can writeZ
δφ dx1 ¼

Z
ðs � δecþS � δEcþτδωþμδηÞ dx1 ð7Þ

which, when the variations are interpreted as spatial velocity
fields, coincides with the expression of the (virtual) internal power
(15) in [17]. This means that the equilibrium equations underlying
the present formulation are the (18) and (12)5 of [17].

3. Bifurcation analysis

Let us consider a system of hyperelastic beams acted upon by
external conservative loads, whose total potential energy can be
written in the form

πðu,ϵ,λÞ ¼
Z

ðφðeðuÞÞ−λuÞ dx1 ð8Þ

λ being the load parameter.
The condition of equilibrium, obtained by requesting πðu,eðuÞ,λÞ

to be stationary, can be written as

sδϵ−λδu¼ se′ðuÞδu−λδu¼ 0 ∀δu
s¼ φ′ðϵÞ ¼ sðϵÞ
ϵ¼ eðuÞ ð9Þ
where a prime stands for differentiation of a function with respect
to its own argument.

Eq. (9), supplied with appropriate boundary conditions, gives a
nonlinear boundary value problem whose solutions are the equili-
brium states of the structure.

3.1. Asymptotic solution in the case of simultaneous buckling modes

Let us assume, now, that (9) admits at least two solution
branches: ðuf ðλÞ,λðtÞÞ and ðubðtÞ,λðtÞÞ—t being a real parameter—
that we call fundamental and bifurcated, respectively. In addition,
we assume that the two branches intersect at a point where t¼0,
so that λð0Þ ¼ λs and uf ðλsÞ ¼ ubð0Þ.

If the fundamental solution is known, we may introduce the
difference fields

vðtÞ ¼ ubðtÞ−uf ðtÞ
ϱðtÞ ¼ sbðtÞ−sf ðtÞ
γðtÞ ¼ εbðtÞ−εf ðtÞ ð10Þ
and look for the asymptotic expansion of the bifurcated solution
near the bifurcation point, that is

vðtÞ ¼ vtþ1
2vt

2þoðt2Þ
λðtÞ ¼ λsþλtþ1

2λ t
2þoðt2Þ ð11Þ

where superimposed bars denote derivatives with respect to t
evaluated at t¼0.

In view of (10) and (11), all the fields in (9) can be seen as
functions of the parameter t. The nonlinear BVP (9) can be
transformed in a sequence of linear BVPs by means of the
following procedure.

The first derivative of (9) with respect to t is

ð _se′ðuÞþse″ðuÞ _u−_λÞδu¼ 0 ∀δu
_s ¼ s′ðϵÞ_ϵ
_ϵ ¼ e′ðuÞ _u ð12Þ
where a superimposed dot denotes derivative with respect to t.

As (12) holds true ∀t and is satisfied for both the fundamental
and the bifurcated paths, we can evaluate it for each path at t¼0.
Then, by making the difference between the latter and former
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