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a b s t r a c t

In this study, the buckling analysis of homogeneous and non-homogeneous orthotropic, thin walled

truncated conical shells under axial load and in large deformation has been investigated. First, the

governing relations are derived using the large deformation theory with von Karman–Donnell-type of

kinematic non-linearity. Then modified Donnell type stability and compatibility equations of non-

homogeneous orthotropic thin-walled truncated conical shells in large deformation are obtained and

solved analytically. Finally, influences of the non-homogeneity, orthotropy and the variation of the shell

geometry on the non-linear axial buckling load are investigated. Comparing the results of this study

with those in the literature validates the present analysis.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As a common structure, the homogeneous and non-homogeneous
composite truncated conical shell has been widely applied in many
fields such as space flight, rocketry, aviation, nuclear reactors, jet
nozzles, and such other civil, chemical, mechanical, submarine and
aerospace engineering technology, etc. The buckling analyses of such
shells are very important for their applications, and have been of
considerable research interest in recent years. The basic information
for the buckling behavior of composite shells was described and
summarized by Reddy [1]. The fundamental concepts on the present
subject—such as geometric non-linearity, bifurcation, and limit loads
were interpreted by Brush and Almroth [2], Agamirov [3] and
Amabili [4]. The buckling behavior of the orthotropic conical shell
in small deformation was first studied by Singer [5] and then a
number of investigations have considered the mechanical behavior of
orthotropic conical shells [6–10].

In the study of the stability of a thin-walled conical shell the
prebuckling deformation may be of the order of the thickness.
Thus, a non-linear theory is probably necessary for such investi-
gations. There is much literature on the buckling analysis of
homogeneous isotropic shells in large deformation [11–16].
A review of the literature shows that few studies have been

carried out to investigate the buckling and vibration of homo-
geneous orthotropic shells in large deformation [17–23].

In recent years, new types of composite materials have been
used in engineering and many investigations consider non-
homogeneous orthotropic materials. In various technological
situations are demanding that the non-homogeneity of orthotro-
pic materials should be taken into account for the buckling
behavior of structural elements. The non-homogeneity of the
materials stems from the effects of humidity, surface and thermal
polishing processes and methods of production, which render the
physical properties of materials, vary from point to point (random,
piecewise continuous or continuous functions of coordinates).
Furthermore, certain parts of structural elements have to operate
under radiation and elevated temperatures and which cause non-
homogeneity in the material, i.e., the constants of the material
become functions of space variables. When non-homogeneous
materials deform, they retain their shapes up to the point of
rupture. Hence, in the computations of structural members made
of such materials, the fundamental relations and governing
equations of deformable body mechanics are applicable [24–27].
Published literatures on the analysis of composite orthotropic
structures with variable material properties are limited in num-
ber [28–38]. All these solutions are based on the small deflection
theory.

Previous studies show that geometric non-linearity plays a
significant role in the buckling behavior of homogeneous shells.
As the geometrical non-linearity is taken into account in the
governing equations of non-homogeneous shells, unpredictable
behaviors may be occur. Therefore, it is of vital importance to

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/tws

Thin-Walled Structures

0263-8231/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.tws.2012.08.002

n Corresponding author. Tel.: þ90 246 2111195; fax: þ90 246 2370859.

E-mail address: asofiyev@mmf.sdu.edu.tr (A.H. Sofiyev).

Thin-Walled Structures 62 (2013) 131–141

www.elsevier.com/locate/tws
www.elsevier.com/locate/tws
dx.doi.org/10.1016/j.tws.2012.08.002
dx.doi.org/10.1016/j.tws.2012.08.002
dx.doi.org/10.1016/j.tws.2012.08.002
mailto:asofiyev@mmf.sdu.edu.tr
dx.doi.org/10.1016/j.tws.2012.08.002


study the non-linear response of non-homogeneous materials
[39–46]. All of these studies focus on the non-linear buckling
behavior of functionally graded shells.

To date, the non-linear buckling behavior of homogeneous and
non-homogeneous orthotropic truncated conical shells has not
been discussed because of difficulties due to non-linear mathe-
matics and complicated structures. The current research deals
with the non-linear buckling behavior of homogeneous and non-
homogeneous orthotropic truncated conical shells subjected to
uniform axial load, when the Young’s moduli continuously
through the thickness coordinate direction.

2. Governing equations

As shown in Fig. 1 a thin non-homogeneous orthotropic
truncated conical shell subjected to a uniform axial load, T, is
considered. The structure is referred to a curvilinear coordinate
system (S, y, z), where S and y axes lie along the generator and in
the circumferential direction on the reference surface of the cone,
respectively, and the z axis, being perpendicular to the plane of
the first two axes, lies in the inwards normal direction of the cone,
R1 and R2 indicate the radii of the cone at its small and large ends,
respectively, g denotes the semi-vertex angle of the cone. H is
height, L is the length and h is the thickness of the truncated cone.
S1 and S2 are the distances from the vertex to the small and large
bases, respectively. Also, u, v and w denote displacement (due to
loads) of a point in the middle surface in the direction of a
generator, the circumferential direction, and the inward normal
direction, respectively. The axes of orthotropy are parallel to the
curvilinear coordinates S and y.

The non-homogeneity of the material of the shell is assumed
to arise due to the variation of Young’s moduli along the thickness
direction z as (Lomakin [24]; Babich and Khoroshun [31]; Sofiyev
and Schnack [33]).
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where E0s and E0y are the Young’s moduli in S and y directions,
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In this study, the non-homogeneity function of the material of

the truncated conical shell is assumed to be power function
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According to von Karman non-linear strain–displacement

relations, the strain components on the middle plane of truncated
conical shells are
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where eS and ey are the normal strains in the curvilinear
coordinate directions S and y on the reference surface, respec-
tively, eSy is the shear strain and y1¼ysing.

According to the flexural shell theory, the stress-displacement
relations for non-homogeneous orthotropic truncated conical
shells are given as follows:
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where the quantities Qij, i,j¼ 1, 2, 6, are
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in which vSy and vyS are the Poisson’s ratios, assumed to be
constant and satisfying nySE0S ¼ nSyE0y (Grigorenko and Vasilenko
[26]; Sofiyev and Schnack [33]).

The well-known force and moment resultants are expressed
by (Reddy [1]):
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The relations between the force resultants and the stress
function, C, are as follows:
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By using large deformation theory of the thin-walled truncated
shell, the stability and strain compatibility equations of truncated
conical shells are given as follows (Agamirov [3]):
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Substituting expressions (3) in (5) and considering the result-
ing expressions together with relations (6), after some rearrange-
ments the relations found for moments and strains, being
substituted in (7)–(10), then for the simplicity of theFig. 1. Geometry of a truncated conical shell under axial load.
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