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Due to the increased consumption of thin-walled structural elements there has been increasing focus and

need for more detailed calculations as well as development of new approaches. In this paper a thin-

walled beam element including distortion of the cross section is formulated. The formulation is based on

a generalized beam theory (GBT), in which the classic Vlasov beam theory for analysis of open and closed

thin-walled cross sections is generalized by including distortional displacements. The beam element

formulation utilizes a semi-discretization approach in which the cross section is discretized into wall

elements and the analytical solutions of the related GBT beam equations are used as displacement

functions in the axial direction. Thus the beam element contains the semi-analytical solutions. In three

related papers the authors have recently presented the semi-discretization approach and the analytical

solution of the beam equations of GBT. In this approach a full set of deformation modes corresponding to

the homogeneous GBT equations are found. The deformation modes of which some are complex decouple

the state space equations corresponding to the reduced order differential equations of GBT and allow the

determination of the analytical solutions. Solutions of the non-homogeneous GBT differential equations

and the distortional buckling equations have also been found and analyzed. Thus, these related papers

are not dealing with an element but dealing with analytical solutions to the coupled differential

equations.

To handle arbitrary boundary conditions as well as the possibility of adding concentrated loads as

nodal loads the formulation of a beam element is needed. This paper presents the formulation of such a

generalized one-dimensional semi-discretized thin-walled beam element including distortional contri-

butions. It should be noticed that we are only dealing with a basic generalized beam theory and not an

extended finite element formulation of an approximate beam element, which allows the addition of

special (transverse extension and shear lag) modes. Illustrative examples showing the validity and the

accuracy of the developed distortional semi-discretized thin-walled beam element are given and it is

shown how the novel approach provides accurate results making it a good alternative to the traditional

and time consuming FE calculations.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the civil, mechanical and aerospace industry thin-walled
members are often used because of the high strength and the
effective use of material. Due to the increased consumption of
thin-walled structural elements there has been increasing focus
and need for more detailed calculations. Thus, it has been
necessary to extend the classic beam theory to include the
distortion of the cross section. Such an extension of the theory
is considered in this paper and in a number of companion papers
published by the authors [1–3], where a novel approach to

generalized beam theory is formulated. A variety of other for-
mulations and methods taking distortional displacements into
account have been proposed for analysis of both open and closed
cross sections. Thus, concerning analysis of thin-walled members
including distortion of the cross section there are a number of
methods available among which are: (i) the use of shell finite
elements in the finite element method (FEM) [4,5], perhaps with
utilization of recursive substructuring [6], (ii) the finite strip
method (FSM) [7–11], and (iii) the use of approximate GBT-finite
beam elements. Concerning approximate GBT-finite beam ele-
ments, specially the traditional first generation of generalized
beam theory, known as GBT, initially proposed by Schardt in 1966
[12], has been very popular and fostered a lot of research and
developments, mostly undertaken by a few independently work-
ing European groups, among others by Schardt [13], Davies [14],
Lepistö [15], Sim ~oes da Silva and Sim~ao [16], Gonc-alves et al. [17],
Gonc-alves and Camotim [18] and Camotim and Silvestre [19].
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Silvestre and Camotim also extended the theory to include
orthotropic materials, see [20,21], and experimental verifications
have been presented by for example Rendek and Balaz [22].
Furthermore, Silvestre presents buckling solutions as well as
non-linear post buckling solutions in [19]. For an overview and
information about the research and development of GBT, see
Camotim et al. [23,24].

The present novel approach to Generalized Beam Theory (GBT)
involves a cross-section semi-discretization process as well as a
determination of the natural cross-section eigenmodes and related
axial solution functions by exact analytical solution of the related
first-order GBT equations. Hereby the approach is different from
the traditional GBT formulation developed by Schardt [12,13].
When Schardt uses the GBT equations to find distortional defor-
mation modes the shear coupling stiffness terms are neglected.
This corresponds to modal analysis with orthogonal (Rayleigh)
damping in dynamic structural analysis. The solution of the shear
coupled GBT equations for closed cross-sections was published by
Hanf only in his thesis [25]. For closed (single or multi celled
hollow) thin-walled cross-sections Schardt shows in his presenta-
tion of GBT [13] that the theory needs a relaxation of the Vlasov
assumption of negligible shear strain in order to include the
warping deformation associated with the ‘‘Bredt’s shear flow’’
around each cell. However, it complicates the solution of the
conventional GBT equations by introducing non-negligible shear
coupling terms (off diagonal) in the GBT equations as can be seen
in recent GBT formulations for closed thin-walled cross-sections,
e.g. [26,17,27]. The present formulation therefore adheres to the
definition of the warping function given by Kollbrunner and
Hajdin [28], which adds the integral of the shear flow strains,
see also [29–31].

The present GBT formulation for thin walled beams with both
open and closed (single or multi cell) cross-sections can be
regarded as an extension of classical Vlasov thin-walled beam
theory to include distortional deformation modes as well as
constant shear flows in the walls of the cross-section, see
[32,28,33]. The innovative theoretical developments performed
by introducing semi-discretization leads to a formulation, in
which the rotational degrees of freedom are included, thus
including local plate modes in the formulation even for the
simplest discretization. It makes it possible to analyze thin-walled
members with cross-section distortion and local plate behavior in
a one-dimensional formulation through the linear combination of
pre-established modes of deformation. In contrast to and as a
considerable advance on the traditional GBT formulation this
novel finite element based semi-discretization approach to gen-
eralized beam theory (GBT) solves the fourth-order differential
equations to obtain the distortional displacements for a linear
beam analysis. This means that we find the analytical solution to
the differential GBT equations which through the magnitude of
the eigenvalues gives a much better knowledge of the length
scales of the modes. This also means that we find the exact mode
shapes and amplitude solutions of the reduced order GBT equa-
tions related to the discretized cross section. In contrast, the
conventional GBT formulation solves the equations using the
approximate engineering methods, in which the shear coupling
terms are neglected, producing orthogonal axial and transverse
normal stress modes. In such a case the differential equations are
not solved but a weak solution may be found through the
introduction of the established approximate mode shapes and
use of approximate modal amplitude functions. Thus the conven-
tional GBT formulations use the produced approximated modes
as shape functions in a virtual work or potential energy formula-
tion leading to approximated finite GBT beam elements and the
discretization has to be performed without proper prior knowl-
edge of the problem length scales of the individual modes.

With respect to buckling the first application of the first
generation of GBT to buckling analysis was published in 1970 by
Schardt [34]. Among others also Davies [35], Sim~ao [16] and
Camotim [36] have investigated the area. Buckling analysis using
GBT beam elements is an alternative to the use of finite-strip
methods (FSM), see [37]. However, GBT is as its name states
essentially a beam theory, whereas FSM essentially is based on
plate theory. Therefore, FSM does not contain a natural decom-
position into basic beam, distortional, local and other modes.
Furthermore, conventional GBT does not contain other modes as
mentioned above. Since the modal decomposition may lead to
advantages in design of thin-walled structures using FSM a great
deal of work has been performed by Ádány and Schafer to develop
a constrained finite strip method (cFSM) and modal decomposition
methods for open (single-branched) cross-sections, see [38–40].
The modal approaches of extended conventional GBT and cFSM
formulations have been compared in [41]. The present novel
developed semi-discretization approach to Generalized Beam The-
ory (GBT) is extended in [3] to include the geometrical stiffness
terms which are needed for column buckling analysis and identi-
fication of buckling modes.

When cross sections distort, it means that they change shape.
Distortional displacements can be of a local character in which
the length scale is typically equal to or less than the cross section
dimension or it can be non-local in which case the length scale is
typically several times the cross section dimension or even longer.
In the recent buckling literature and especially in codes there is a
tendency, with respect to buckling, to distinguish between these
two behaviors as distortional buckling and local buckling. In [1–3]
we are operating with global, distortional non-local and distor-
tional local modes when we define first-order displacement
modes. However, in paper [3] which concerns buckling we have
chosen to distinguish between distortional buckling and local
buckling as in the recent codes and literature.

It should be noticed that shear deformation accommodating
Bredt’s shear flow around closed cells is included in the theory
through the specific definition of the warping function, see
Ref. [28]. Since we are dealing with a basic generalized beam
theory and not an extended finite element formulation of an
approximate beam element it makes sense to neglect the overall
transverse shear deformation as in conventional beams. It is also
important to note that shear lag is not included and that it would
not be included even by including shear deformation as described
by Kollbrunner and Hajdin [28]. Thus, we are only dealing with a
beam element adhering to generalized beam theory and not an
extended weak formulation of a finite beam element that allows
the addition of special (transverse extension and shear lag) modes.

Let us introduce the contents of the following sections and
illuminate the development. In the theories of beams, the dis-
placements assumed are typically separated into a sum of
displacement fields. In the sections involving the determination
of such a displacement field, only one of these displacement fields
is considered in the variational formulation. The basic kinematic
assumptions of one of these displacement fields are introduced in
Section 2. The displacements are separated into the product of
cross-section displacement functions and the axial variation
functions. Following this, the strain fields are derived. In Section
3 constitutive energy assumptions lead to the formulation of the
internal and external elastic energy potential. In Section 4 the
cross-section is discretized by straight wall elements in which the
local transverse displacements, the warping displacements and
the loads are interpolated. The element interpolation functions
are introduced and the total elastic potential energy (for a single
mode) is formulated in a semi-discretized form. To get a formula-
tion resembling a generalization of Vlasov beam theory [32],
Section 5 first briefly describes three main steps leading to the
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