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a b s t r a c t

The paper presents an analysis of the optimal design of cold-formed beams with generalized open

shapes under pure bending, uniformly distributed loads, concentrated loads and axial loads with

constant bending moment. The optimization problem includes the cross section area as the first

objective function and the deflection of a beam as the second one. The geometric parameters of cross

sections are selected as design variables. The set of constraints includes global stability condition,

selected forms of local stability conditions, strength condition and technological and constructional

requirements in a form of geometric relations. The strength and stability conditions are formulated and

analytically solved using mathematical equations. The optimization problem is formulated and solved

with help of the Pareto concept of optimality. The numerical procedure, based on the Messac

normalized constraint method, include discrete, continuous and discrete-continuous sets of design

variables. Results of the numerical analysis for different loads of beams with monosymmetrical cross

section shapes are presented in tables.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The thin-walled beams are distinguished by their good
strength properties, relatively low weight and the ability to carry
heavy loads. The main advantage of these structures is the
beneficial relationship between the weight and loads carrying
capabilities. The cold-formed thin-walled beams are capable of
meeting rigorous requirements imposed by users in different
branches of mechanical industry and civil engineering. The
biggest value of these structures is their efficiency, as large
increment of strength may be obtained through by appropriate
choice of cross section shape, with minimal or no weight increase.
The thin-walled beams can be therefore considered as an area
with great research potential, where innovation can lead to very
practical improvements. There are many significant works about
cold-formed thin-walled structures, including works of Davies [1],
Ghersi et al. [2], Hancock [3] and many others papers and
monographs.

From theoretical point of view, the thin-walled beam struc-
tures have also some limitations that must be address during a
design process. The most important is susceptibility of these
structures to global and different forms of local buckling. In most
practical cases, calculations of critical loads require applying

complex methods of finding satisfactory solutions for the stability
state of the thin-walled beams. These calculations may be done
analytically or numerically, what was presented by Mohri [4].

The advantages of thin-walled beams can be better utilized,
and their faults can be minimized, if their basic geometric
parameters are calculated with the help of structural optimiza-
tion. Most of the works in the area of optimal design are focused
on so-called single criterion scalar optimization, where the most
commonly used optimality criterion is weight of a structure. Such
a criterion is usually connected with economic aspects as mate-
rial, manufacturing and application costs to a certain degree
depend on weight.

Single criterion scalar optimization has limited practical value,
as in most engineering cases, several noncomparable criteria
must be considered in order to reach the optimal design of a
structure. These requirements lead to the need for multicriteria
optimization, where the structure is analyzed in the context of
several, often conflicting, criteria. In the result, such an optimal
design is closer to technical reality and it much better describes
real conditions of structures and their behavior.

Procedures of using bicriteria optimization for the optimal
design of thin-walled cold-formed beams with open different cross
sections were adapted by Kasperska et al. [5–7], Magnucki and
Ostwald [8,9], Ostwald and Magnucki [10], Ostwald et al. [11],
Rodak and Ostwald [12], Ostwald and Rodak [13–15]. The pre-
sented paper is continuation and summary of the previous works.
Problems of stability and optimization of open cold-formed beams
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with special cross sections are presented by Lewiński and Mag-
nucki [16] and Magnucki et al. [17].

2. Models of thin-walled beams with open cross sections

The current research approaches to the problem of optimal
design of thin-walled beams take into account three different
cases of beam loads:

� pure bending (two equal moments M [kN m] applied to the
ends of a beam),

� uniformly distributed load q [kN/m],
� concentrated load P [kN].

These loads are illustrated in Fig. 1.
In the third case of beam load, a special vertical rib is applied

in the point where the concentrated load P is weighed. This rib
prevents the local buckling of a beam.

The generalized cross section is characterized by parameters a,
b, c, d, t and additionally angle a describing relationships between
the lip and the flange. For the generalized monosymetrical cross
section presented in Fig. 2 the total area A and the geometric
stiffness for Saint-Venant torsion Is are in the form:

A¼ 2t
X6

i ¼ 1

li ¼ 2t aþbþcþdð Þ, Is ¼
2

3
t3
X6

i ¼ 1

li ¼
2

3
t3 aþbþcþdð Þ,

where li (i¼1, y, 6) has the following lengths: l1¼a�t, l2¼d,
l3¼t, l4¼b, l5¼t, l6¼c�t.

The auxiliary coordinates of point B(yB, zB) are the following:

yB ¼
d2
þ2td�bðb�2dÞ�2tðb�dÞ�ðc�tÞ½2ðb�dÞ�ðc�tÞ cos a�

2ðaþbþcþdÞ
, zB ¼ 0:

The moments of inertia Iy and Iz of the cross section area in
respect to the y and z axes are as follows:

Iy ¼ 2t
X6

i ¼ 1

1

3
li z2

i�1þzi�1ziþz2
i

� �
, Iz ¼ 2t

X6

i ¼ 1

1

3
li y2

i�1þyi�1yiþy2
i

� �
,

where yi and zi mean the coordinates of the specific cross section
points (points from 0 to 6, see Fig. 2):

y0 ¼ yB, y1 ¼ yB, y2 ¼�dþyB, y3 ¼�dþyB, y4 ¼ b�dþyB,

y5 ¼ b�dþyB, y6 ¼ b�d�ðc�tÞ cos aþyB,z0 ¼ 0,

z1 ¼�ða�tÞ, z2 ¼�ða�tÞ, z3 ¼�a, z4 ¼�a,

z5 ¼�ða�tÞ, z6 ¼�½a�t�ðc�tÞ sin a�:

The main pole S coordinates are:

yS ¼ yBþ
IyoB

Iy
,

where

IyoB
¼ 2t

X6

i ¼ 1

1

3
li zi�1oB,i�1þ

1

2
zi�1oB,iþ

1

2
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and oBi means auxiliary sectorial coordinates with the pole B:

oB,0 ¼ 0, oB,1 ¼ 0, oB,2 ¼�ða�tÞd, oB,3 ¼oB,2þtd,

oB,4 ¼oB,3þba, oB,5 ¼oB,4þðb�dÞt,

oB,6 ¼oB,5þðc�tÞ½ðb�dÞ sin a�ða�tÞ cos a�:

The sectorial moment of inertia of the generalized cross
section has the form:

Io ¼ 2t
X6

i ¼ 1

1

3
li o2

i�1þoi�1oiþo2
i

� �
,

where oi means the sectorial coordinates with the pole S:
oi¼oB,i�(yS�yB)zi (for points i¼0 to 6).

For the generalized antisymmetrical cross section (Fig. 2) the
following additional formulas are applied. The product of inertia
in respect to the y and z axes is as follows:

Iyz ¼
2

3
t
X6

i ¼ 1

li yi�1zi�1þ
1

2
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1

2
yizi�1þyizi

� �
,

where the coordinates of the specific cross section points zi are
the same as in the monosymmetric cross section, whereas
coordinates of yi are:

y0 ¼ y1 ¼ 0, y2 ¼�d, y3 ¼�d, y4 ¼ b�d,

y5 ¼ b�d, y6 ¼ b�d�ðc�tÞ cos a:

H

L

M M

z

x

H

H

L

L

z

z

q
x

x
P

Fig. 1. Models of the thin-walled beams.

Fig. 2. Generalized monosymmetrical and antisymmetrical cross section.
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