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a b s t r a c t

Thin cylindrical shells are the most prevalent and important structural component of vessels across the

process industries. Such structures are prone to accidental buckling due to inadvertently induced

vacuum. Minor deviations in the nominal geometry of the shell can affect the apparent initial buckling

load. One common deviation is that the radius of the vessel is not constant but rather varies randomly

with location on the shell. This paper presents extensive experimental data permitting a full statistical

characterisation of defects of this nature. The data was obtained from detailed measurements of 39

replicate test vessels at the laboratory scale. Both amplitude and frequency content of this type of

imperfection is quantified. Furthermore a methodology whereby the variation in radius is characterised

as a two dimensional random field is outlined. An algorithm to generate realisations of this field is

developed and the output is shown to be consistent with the measured results.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thin cylindrical shells are very efficient structures and have a
wide range of uses. They are especially prevalent in the process
industries forming the major component of storage and reactor
vessels. Conventional mechanical design that is based on limiting
the maximum membrane stress in the vessel, leads to the
adoption of thin-walled vessels. Thin-walled, large diameter
vessels are prone to buckling, either local or global, due to
compressive loading in the axial or radial direction or both. This
mode of failure, if it occurs, tends to be catastrophic resulting in
complete destruction of the vessel. Resistance to buckling of these
vessels is sensitive to magnitude of minor deviations in geometry
from the ideal shape. These geometric imperfections can com-
prise any geometrical feature of the shell which alters it from a
perfect cylinder. These can include out-of roundness, ovality [1],
wall thickness variation [2], welded seams [3] or other random
geometric imperfections such as dents [4]. Fundamentally there is
the premise that the pattern of imperfections in the shell is as a
result of the interaction between the material of construction and
the manufacturing process that is adopted.

It is now accepted that the existence of these initial geometric
imperfections can help explain the discrepancy between theore-
tically predicted critical buckling loads and those measured
experimentally [5]. Furthermore because of the intrinsic random

and unpredictable nature of these imperfections, varying from
vessel to vessel, there will be scatter or dispersion in the
structural response of nominally identical vessels. Hence char-
acterisation of these imperfections performed on a statistical
basis could then inform reliability-based structural design of
these vessels, [6]. This should prove superior to conventional
deterministic design with its reliance on conservative factors of
safety to ensure reliability of the whole population.

This paper will report on work that was carried out to measure
the geometric imperfections in laboratory scale steel cans (having
a nominal 5 l capacity) that are representative of industrial-sized
vessels in the food, pharmaceutical and biotechnology sectors.
Section 2 develops the theoretical basis for the statistical char-
acterisation of the measured imperfections. In Section 3 the
measurement rig is described and the measurement procedures
are outlined. Section 4 presents the analysed experimental data,
the characterisation of the imperfections and the residual random
imperfection data obtained by the removal of any systematic
trends. The two-dimensional random field representation of the
data is then developed and an algorithm is generated that enables
numerical realisations of the field. Section 6 concludes the paper.

2. Theory

2.1. Random field description

The primary imperfection in the shells under study was found
to be the departure of vessel radius from the nominal cylinder
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radius. The theory of Gaussian random fields may be applied to
capture the spatial variability in radius both within any given
vessel and between vessels, [7]. Specifically, the vessel radius, r is
treated as a two dimensional random field. This means that the
radius at any location depends on the axial coordinate, x, and the
circumferential coordinate, y, as determined by some random
function, f.

rðx, yÞ ¼ f ðx, yÞ ð1Þ

A number of simplifying assumptions are employed to deter-
mine the nature of the random function of Eq. (1). It is assumed
that the variation of the imperfection in the axial and circumfer-
ential directions are independent, [8]. This implies that the total
random deviation in the magnitude of the radius at any point is
the sum of the random deviations associated with the axial and
circumferential directions, respectively.

rðx, yÞ ¼ rxðxÞþryðyÞ 0oxoL 0oyo2p ð2Þ

An important distinction between random deviations in radius
in the axial and circumferential directions is that for the latter, the
following constraint must be satisfied:

ryð0Þ ¼ ryð2pÞ ð3Þ

No such condition acts in the axial direction between x(0) and
x(L). Another consequence of independence is that a fully sepa-
rated correlation structure may be defined for the field auto-
correlation function Rr. Furthermore, the random field is taken to
be homogeneous in that the probabilistic dependence between
radii measured at any two points on the surface only depends on
the relative distance (also known as separation or lag distance)
between these locations, (xL and yL) and not on absolute position
on the vessel surface, (x and y) [9]. Taking a zero mean datum, the
random field can be defined by two independent one-dimensional
correlation functions:

RrðxL, yLÞ ¼ RrXðxLÞ�RrYðyLÞ ð4Þ

The key task is to identify the nature of the correlation
functions RrX and RrY, respectively and to obtain their parameters
that will define the correlation distances in each direction.
Correlation function identification must primarily come from
analysis of the measured data informed by physical reasoning. A

study of the literature reveals that correlation functions that have
been employed to model imperfections in structures include
harmonic, exponential [10], exponential-cosine, exponential-lin-
ear and delta functions (white noise) [9,11].

2.1.1. Correlation structure in the axial direction

Fig. 1 illustrates the experimentally measured correlogram
(the correlation coefficient versus the lag distance) for a typical
vessel in the axial direction. The structure of the data is very
similar to that reported by Schenk & Schueller [8]. One potential
correlation function, employed in the literature, and that agrees
with the correlogram is the product of an exponential and linear
term [12]:

RrXðxLÞ ¼ e�bxL ð1þbxLÞ ð5Þ

where xL is the axial separation or lag distance and b is the axial
auto-correlation parameter. Eq. (5) describes the variation in the
auto-correlation function (normalised auto-covariance function)
in the axial direction. It implies the level of correlation between
radii falls monotonically with increasing lag distance in the axial
direction moving from one end of the vessel to the other. There is
a point of inflexion in the function which means the rate at which
the degree of correlation falls off has a maximum value. (Note
that if Eq. (5) consisted of a single exponential term without the

Nomenclatures

An Fourier cosine coefficient for circumferential auto-
correlation waveform,

an Fourier cosine coefficient for circumferential radius
waveform, m

ax Radial deviation realisation (axial direction)
coefficient

ay Radial deviation realisation (circumferential direc-
tion) coefficient

Bn Fourier sine coefficient for circumferential auto-cor-
relation waveform

bn Fourier coefficient for circumferential radius
waveform, m

bx Radial deviation realisation (axial direction)
coefficient

by Radial deviation realisation (circumferential direc-
tion) coefficient

L Vessel length, m
n Number of full circumferential waves (Fourier fre-

quency harmonic number)

Rr Two dimensional field auto-correlation function
RrX Axial auto-correlation function
RrY Circumferential auto-correlation function
Sr (ox) Normalised mean square spectral density of radius in

the axial direction, m
r Vessel radius, m
x Axial position (coordinate), m
xL Auto-correlation lag distance, m
b Axial auto-correlation parameter, m�1

Zx Axial de-correlation length, m
Zy Circumferential de-correlation angle, rad
y Circumferential position (coordinate), rad
yL Auto-correlation circumferential lag angle, rad
sr Standard deviation in radius, m
srx Standard deviation in radius in the axial direction, m
sry Standard deviation in radius in the circumferential

direction, m
ox Circular frequency in Fourier domain (axial direction),

rad/m

Fig. 1. Auto-correlation for radial deviation in the axial direction for a typical

cylinder.
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