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a b s t r a c t

The structural behaviour of elliptical hollow sections has been examined in previous studies under

several loading conditions, including pure compression, pure bending and combined uniaxial bending

and compression. This paper examines the elastic buckling response of elliptical hollow sections under

any linearly varying in-plane loading conditions, including the most general case of combined

compression and biaxial bending. An analytical method to predict the elastic buckling stress has been

derived and validated against finite element results. The predictive model first identifies the location of

the initiation of local buckling based on the applied stress distribution and the section geometry. The

critical radius of curvature corresponding to this point is then introduced into the classical formula for

predicting the elastic local buckling stress of a circular shell. The obtained analytical results are

compared with results generated by means of finite element analysis. The comparisons between the

analytical and numerical predictions of elastic buckling stress reveal disparities of less than 2.5% for thin

shells and, following an approximate allowance for the influence of shear, less than 7.5% for thick shells.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Research activity in the area of elliptical sections has increased
in recent years due to their emergence as hot-rolled structural
products. Elliptical hollow sections (EHS) combine the elegance of
circular hollow sections (CHS) with the improved structural
efficiency in bending associated with sections of differing flexural
rigidities about the two principal axes. This behaviour has been
exploited in a number of recent projects that have adopted EHS as
structural elements, such as the Honda Central Sculpture in Good-
wood, UK, the Society Bridge in Braemar, UK [1] and the airport at
Barajas in Madrid, Spain [2]. EHS were also included in the latest
edition of the European product standard EN 10210 [3] and in the
BCSA/SCI Eurocode member resistance tables [4]. A review of
research into the structural behaviour of elliptical hollow sections,
together with a description of recent practical applications, may be
found in [5]. Further subsequent work on the buckling response of
EHS members has also been performed [6–12].

2. Literature review

The focus of the present study is the elastic buckling response of
elliptical tubes under linearly varying in-plane stress distributions,

including the most general case of combined axial compression
plus biaxial bending. First, previous investigations of the elastic
buckling response of EHS under isolated loading cases, as well as
compression plus uniaxial bending, are reviewed.

2.1. Compression

Marguerre [13] made the first attempt at representing the
buckling behaviour of cylindrical shells of variable curvature
under compression. The work was later continued by Kempner
[14] and Hutchinson [15]. Kempner’s work [14] concluded that
the elastic buckling stress of an oval hollow section (OHS) could
be accurately predicted as the buckling stress of a circular hollow
section (CHS) with a radius equal to the maximum radius of
curvature of the OHS. This solution was shown to be a lower
bound. Hutchinson [15] found that this approach could also be
applied to elliptical hollow sections (EHS), provided that the shell
is sufficiently thin. The proposals were later confirmed by
experiments carried out by Tennyson et al. [16].

Further investigations have been carried out by Zhu and
Wilkinson [17], Chan and Gardner [18], Ruiz-Terán and Gardner
[19] and Silvestre [20]. These studies confirmed that Kempner’s
approach [14] of basing the elastic buckling stress of an EHS on
that of a CHS with a radius equal to the maximum radius of
curvature of the ellipse is acceptable but with increasing errors
for higher aspect ratios and thicker sections. Analyses of the
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elastic buckling response of EHS using generalised beam theory
(GBT) was undertaken by Silvestre [20]. Both Ruiz-Terán
and Gardner [19] and, using GBT, Silvestre [20] proposed mod-
ifications to the Kempner equation to achieve more accurate
predictions of the elastic buckling stress of EHS of various aspect
ratios and shell thicknesses.

2.2. Bending

Investigations of elliptical cylinders subjected to major axis
bending were carried out by Heck [21] and Gerard and Becker
[22] where it was observed that although the maximum com-
pressive stress occurs at the stiffest part of the cross-section
(which is most resistant to buckling), the critical radius of
curvature occurs at a point between the maximum and minimum
radii of curvature. Gerard and Becker [22] derived the critical
radius for major axis bending to be rcr,b,ma¼0.649a2/b, where a

and b are the half major and half minor axis dimensions of an EHS,
respectively, by optimising the function composed of the varying
curvature expression and the elastic bending stress distribution.
For minor axis bending, the location of initiation of buckling was
found to be at the same location as for an EHS under pure
compression (i.e., rcr,b,mi¼a2/b). Once the critical radius of curva-
ture (i.e., the location of the initiation of buckling) has been
determined, the elastic buckling stress of the EHS can again be
calculated by means of the elastic buckling expression for a CHS.

2.3. Combined actions

The performance of EHS under combined compression and
uniaxial bending was investigated by Gardner et al. [23], follow-
ing studies of the pure compression and pure bending cases
previously presented [18,24]. The critical radius of curvature for
an EHS under compression and minor axis bending was found to
be similar to the pure compression and pure minor axis bending
cases, where rcr,mi is expressed as a2/b. Under combined compres-
sion and major axis bending, the critical radius will shift towards
the centroidal axis as the compressive part of the loading
increases, and an expression in terms of c, the ratio of the end
stresses, was proposed. A simplification of this expression for
a/b¼2, considering a conservative linear transition between the
pure compressive and pure major axis bending critical radii, is:

rcr,ma ¼ rcr,b,maþðrcr,c�rcr,b,maÞ
cþ1

2

� �
ð1Þ

where, rcr,b,ma and rcr,c are the critical radii of curvature for pure
major axis bending and pure compression, respectively, and c is
the ratio of end stresses and is in the range of �1rcr1.

3. Analytical study of elastic buckling of EHS under combined
actions

The elastic buckling stress scr of an EHS may be found from the
classical buckling stress [14,22] expression:

scr ¼
Et

rcr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1�n2Þ

p ð2Þ

where, rcr corresponds to the point of initiation of local buckling
in the cross-section, which depends on the applied stress dis-
tribution, E is the Young’s modulus, t is the shell thickness and n is
the Poisson’s ratio.

The present section will focus on finding the location of the
critical radius of curvature when an EHS is subjected to any
generalised linearly varying in-plane stress distribution. The most
general form of such loading on a cross-section is the case of

combined compression and biaxial bending. An analytical model
that yields the exact location of the initiation of local buckling in
an elliptical cross-section is presented.

Combined compression and bending can be achieved on a
cross-section by applying a compressive force at eccentricities
(ez and ey) to the centroid of the section, producing the stress
distributions illustrated in Fig. 1. The location of the initiation of
local buckling and the corresponding critical radius rcr for this
load combination may be found by optimising the product of the
stress function sr, which is the product of the elastic bending
stress distribution and the radius of curvature; i.e., the location at
which the stress causing local buckling is minimum is being
sought. This method to find the critical radius was originally used
by Gerard and Becker [22] for the case of pure major axis bending,
as described in Section 2.2.

It is therefore necessary to define equations for stress and the
radius of curvature in order to assemble the stress function. An
EHS subjected to a combination of a compressive load and
moments about both axes would have a total elastic stress
distribution defined by:

s¼ scþsz1
z

a
þsy1

y

b
ð3Þ

where sc¼N/A is the uniform compressive stress, in which N is
the applied compressive load and A is the cross-sectional area,
sz1(z/a) is the linearly varying stress associated with the major
axis, sy1(y/b) is the linearly varying stress associated with the
minor axis, sz1¼Neya/Iy at z¼a, where Iy is the second moment of
area about the major axis and sy1¼Nezb/Iz at y¼b, where Iz is the
second moment of area about the minor axis; see also Fig. 1.

The general expression for the radius of curvature of an EHS is:

r¼
a2
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The mathematical optimisation of the stress function sr:

sr¼
N
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Fig. 1. EHS under combined compression and biaxial bending and stress distribu-

tions along the centroidal axes.
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