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a b s t r a c t

In many industries, rigid-plastic methods of analysis are a useful design aid for safety calculations,

hazard assessments, security studies and forensic investigations of ductile structures, which are

subjected to large dynamic loads producing an inelastic response. This paper examines the behaviour

of a rectangular plate struck at the centre by a rigid mass impact loading. A theoretical method has been

developed previously for arbitrarily shaped plates which retains the influence of finite transverse

displacements, or geometry changes. It is used in this paper to predict the maximum permanent

transverse displacements and response duration of plates having boundary conditions characterised by

a resisting moment mM0 around the entire boundary, where m¼0 and 1 give the two extreme cases of

simply supported and fully clamped supports, respectively.

The theoretical predictions are compared with some experimental data recorded on fully clamped

metal rectangular plates having a range of aspect ratios and struck by masses travelling with low

impact velocities up to nearly 7 m/s and which produce large ductile deformations without failure. The

theoretical analysis gives reasonable agreement with the corresponding experimental data for masses

having blunt, conical and hemispherical impact faces.

For sufficiently large initial impact energies, the projectile would perforate a plate and, for

completeness, a useful design equation is presented which predicts perforation energies larger than

all of the test data, as expected.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Simple and reliable theoretical methods are still valuable for
design purposes, particularly for preliminary design and hazard
assessments, and for forensic investigations after accidents. A theore-
tical rigid-plastic method was developed in [1], which retained the
influence of large transverse displacements (i.e., geometry changes, or
membrane effects) and which has been used to predict the maximum
permanent transverse displacements, or damage, of ductile beams,
circular and rectangular plates when subjected to a pressure pulse
causing plastic strains. It was shown how this method can be
simplified with an approximate yield condition to predict useful
design equations, which circumscribe and inscribe the predictions of
an exact yield criterion. This method was also used to examine the
impulsive, or blast, loading of rectangular plates, and good agreement
was found with experimental results recorded on ductile metal plates
having various aspect ratios [2–4]. The method was extended to
obtain the response of circular plates [4–6] and square plates [6]
when struck by a solid mass at the centre, and again good agreement
was reported with the maximum permanent transverse displace-
ments observed in experimental tests on ductile metal plates.

This paper extends the above theoretical method to obtain the
maximum permanent transverse displacements, or ductile damage,

for a rectangular plate struck by a rigid mass at the centre. It turns out
that a relatively simple equation was obtained which gives good
agreement with experimental data recorded on ductile metal rectan-
gular plates having a range of aspect ratios from 0.4 to 1 and reported
in [7]. Thus, design equations are now available for predicting the
maximum permanent transverse displacements, or damage, for
circular plates and rectangular plates (including square plates and
beams) subjected to pressure pulses (including the limiting case of an
impulsive loading) or central solid mass impacts. Moreover, these
equations have been tested against experiments on ductile metal
plates and are therefore suitable for design purposes, safety calcula-
tions, security studies and hazard assessments.

The next section of this paper outlines the theoretical method
which is used in Section 3 to examine the behaviour of a ductile
rectangular plate subjected to a mass impact loading at the mid-span.
Section 4 discusses briefly the experimental details of the data
obtained on mild steel rectangular plates struck by a mass at the
plate centre which produces large ductile deformations without any
failure. Sections 5 and 6 contain a discussion and conclusions,
respectively.

2. Theoretical method for dynamic loading of plates

A theoretical procedure was developed in [1], to study the
response and predict the permanently deformed profile of an
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arbitrarily shaped ductile plate, when subjected to large static or
dynamic loads which produce plastic strains. The material is
assumed to be rigid, perfectly plastic with a yield stress s0 and
the plate has a uniform thickness H. The governing equations can
be simplified for an impact loading and written in the form
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where G is an impact mass, and m is the mass per unit surface area
of a plate. The transverse displacement of a plate is w, while _w
and €w are the associated velocity and acceleration. W is the
transverse displacement at the plate centre which is immediately
underneath a striking mass.

The terms on the left hand side of Eq. (1) are the work rate due
to the inertia forces, where A is the surface area of a plate. The
first term on the right hand side of Eq. (1) is the energy dissipated
in any continuous deformation fields. The second term gives the
energy dissipated in n plastic bending hinges, each having an
angular velocity ð@ _w=@rÞm across a hinge of length Cm. The final
term is the plastic energy absorption in n transverse shear hinges,
each having a velocity discontinuity ð _wÞu and a length Cu. Eq. (1)
ensures that the external work rate equals the internal energy
dissipation.

The general method has been used to study the dynamic
plastic response of beams, and of circular, square and rectangular
plates subjected to dynamic pressure pulses and also blast
loadings [1–4], and for beams, circular and square plates struck
at the mid-span by a rigid mass [4–6]. It is used in this paper to
examine a rectangular plate struck by a rigid mass at the centre,
and, since large ductile deformations are studied without any
material failure, or perforation, the last (transverse shear) term in
Eq. (1) is not considered further. Thus, the yield condition consists

of four generalised stresses ðMr ,My,Nr ,NyÞ, which can be related
by the limited interaction surface shown in Fig. 2 of [6]. However,
if a deformation profile consists only of rigid regions separated by
plastic hinges, then the exact yield condition in Fig. 1 governs
plastic flow at the hinge lines. A square yield condition circum-
scribes the exact yield condition (maximum normal stress yield
criterion), while another one which is 0.618 times as large would

Nomenclature

a defined in the Appendix
d diameter of projectile
m dimensionless moment resistance at supports, m¼0

and 1 for simply and fully clamped supports, respec-
tively

q Cowper Symonds exponent (Eq. (14))
t time
w transverse displacement
x, y Cartesian coordinates (Fig. 2)
A surface area of a plate
2B width of a rectangular plate (Fig. 2)
D Cowper Symonds coefficient (Eq. (14))
Er energy ratio (Eq. (13))
G mass of a projectile or striker
H plate thickness
K dimensionless initial kinetic energy (Eq. (15))
2L length of a rectangular plate (Fig. 2)
M0 plastic collapse moment per unit length (s0H2/4)
Mr, My radial and circumferential bending moments per

unit length
N0 plastic collapse force per unit length (s0H)

Nr, Ny radial and circumferential membrane forces per
unit length

R radius of circular plate
S span
T response time
V volume of material
V0 initial impact or impulsive velocity
W transverse displacement at centre of rectangular and

circular plates (Fig. 2)
Wf maximum permanent transverse displacement
a defined by Eq. (5a)
b aspect ratio (Eq. (5b))
g, gc mass ratios (Eqs. (5c) and (17) for rectangular and

circular plates, respectively)
ef engineering rupture strain in tension
_e strain rate (Eq. (14))
Z pressure pulse ratio (Appendix)
kr ,ky radial and circumferential changes of curvature
l rV2

0L2=M0 for a rectangular or square plate, Eq. (A.4)
for a circular plate

m mass per unit surface area of a plate
r density of plate material
s0,s00 static and dynamic flow stresses
su static ultimate tensile stress
O dimensionless initial kinetic energy (Eq. (12))

Fig. 1. Yield conditions at the plastic hinge lines (including the supports for ma0)

which develop within the rectangular plate in Fig. 2.
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