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Over the years the finite strip method (FSM) has proved to be an invaluable tool in the study of buckling
modes in thin-walled structural members. This paper presents a formulation of the FSM, which is able
to predict the buckling stresses of initially perfectly straight thin-walled inelastic members under
uniform compression. Plasticity is accounted for by means of plastic flow equations. Previous short-
comings of plastic flow theory with respect to the modeling of buckling problems are overcome by
deriving an expression for the inelastic shear stiffness from second order considerations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Early work in the development of the finite strip method (FSM)
was carried out by Wittrick [33], and Williams and Wittrick [32].
However, the FSM in its current form, often referred to as the
semi-analytical formulation, is attributed to Przemieniecki [29],
Planck and Wittrick [28], and Cheung [11].

Graves Smith and Sridharan [18] and Hancock [19] extended
the method to study the elastic post-buckling behavior of thin
plates. Fan [14] and later Lau and Hancock [22] developed a
version of the FSM using spline displacement functions, while
Dawe [12] used curved finite strips.

Over the past decades the FSM in its various forms has been
used extensively by many researchers and is credited with greatly
contributing to our understanding of buckling modes in thin-
walled members.

The premise of the FSM in its basic form is that the buckling
deformations in the direction of the longitudinal axis of the
member can be represented by a sinusoidal function. Adopting
this as a given, the member is then subdivided in the transverse
direction, giving rise to a number of strips separated by nodal lines
(Fig. 1). Cubic polynomials are used to represent the out-of-plane
displacements along a transverse line. This method holds an
advantage in terms of computational efficiency over the finite
element method, which requires a much higher number of
elements as a result of the necessary discretization of the geometry
in both the longitudinal and transverse directions. Although
different boundary conditions have been studied by proposing
displacement functions representing different longitudinal shapes

*Tel.: +44 114 222 0252.
E-mail address: j.becque@sheffield.ac.uk

0263-8231/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tws.2011.08.008

[9], the FSM was originally developed for strips which are simply
supported at the ends, and the paper will stay within this scope.

The FSM is ideally suited for implementation into computer
software: CUFSM [30], developed at John Hopkins University, and
ThinWall [27], developed at the University of Sydney, both
implement the FSM for elastic materials. Fig. 2 shows a typical
output diagram for ThinWall. The section under consideration is a
lipped channel and a single sine half-wave is assumed for the
longitudinal displacements. Fig. 2, which plots the elastic buck-
ling stress versus the buckling half-wavelength, shows three
distinct branches in the output curve. The buckling mode asso-
ciated with the shorter wavelengths is the local mode and the
minimum in the curve indicates the local buckling stress and the
local buckling half-wavelength of a locally buckled ‘cell’ (Fig. 3).
The solution for the intermediate wavelengths corresponds with
distortional buckling, while the longer wavelengths are associated
with overall (column) buckling.

The inelastic finite strip method presented in this paper was
implemented in MATLAB and required a mere 170 lines of code,
thus providing a valid, economical alternative in cases where
commercial finite element packages are unavailable or deemed
too expensive. Furthermore, finite element packages usually only
provide the option of performing an elastic buckling analysis,
which is a perturbation analysis based on the initial (elastic)
material properties. Few, if any, commercial packages allow for
the user to conduct an inelastic buckling analysis, accounting for
loss of stiffness at higher stress levels. As an added advantage, a
modified version of the finite strip method, the ‘constrained finite
strip method’ allows for a modal decomposition of the results,
which is difficult to obtain through finite elements [1]. This modal
decomposition is an important tool to complement the Direct
Strength Method for thin-walled structural members [25].
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nodal line

Fig. 1. Finite strips.
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Fig. 2. Typical FSM results.

Fig. 3. Locally buckled shape.

Many structural, aeronautical, nautical, and mechanical appli-
cations involve thin-walled members of non-linear metals, such
as aluminum or stainless steel. Gradual yielding in the stress—strain

curve, associated with a gradual loss of stiffness affects the buckling
behavior of these members. Lau and Hancock [23] developed two
versions of the FSM, which account for elastic-plastic behavior.
A first version is based on plastic deformation theory [8], assum-
ing a fixed relationship between stresses and total strains.
Although deformation theory is generally considered flawed in
its concept and inferior to plastic flow theory, Lau and Hancock
reported reasonable agreement with the experiment. Secondly,
the researchers developed an FSM formulation based on the
plastic flow equations of Handelman and Prager [20] and found
that the model considerably overestimated the buckling stresses
of plates, a finding which echoed the results of Handelman and
Prager’s [20] plate theory. The short-comings of plastic flow
theory in its ability to model buckling problems are well-docu-
mented and are usually referred to as the ‘plastic buckling
paradox’. The essence of this problem lingers in the fact that
plastic flow theory wrongfully dictates a totally elastic relation-
ship between shear stresses and shear strains at the onset of
buckling [21]. Due to this elastic ‘locking-in’ of the shear stresses
with the shear strains, the shear stiffness and consequently the
buckling stresses are grossly overestimated.

Bradford and Azhari [10] developed their own inelastic finite
strip formulation, which included the use of bubble functions:
extra modes associated with nodeless degrees of freedom. They
demonstrated that the addition of these bubble functions has a
beneficial effect on the convergence of the solution, similar to
using a larger amount of strips. The constitutive relations adopted
in their model are based on the deformation theory of plasticity
and borrow from the plate theories of Bijlaard [8] and Stowell
[31]. In a later paper Azhari et al. [2] extended these concepts to
include thickness-tapered plates.

It is noted that alternatives to the finite strip method are
available and have been used successfully to study the stability of
thin-walled inelastic compression members. In this respect
the finite element method using shell elements provides a
particularly versatile and popular option. Recent work using shell
finite elements in this area includes: Gardner and Nethercot [15],
Lecce and Rasmussen [24], Mahmud et al. [26], Becque and
Rasmussen [5,6], and Zhu and Young [34].

Gongalves and Camotim [16] and Gongalves et al. [17] on the
other hand chose to employ generalized beam theory for the
inelastic bifurcation analysis of uniformly compressed thin-
walled members. The authors developed two formulations, with
one being based on plastic deformation theory, while the other
incorporated plastic flow theory. Examples indicated that the flow
based theory consistently yielded much higher predictions than
the deformation based theory.

This paper aims to present an inelastic version of the FSM,
which is unaffected by the plastic buckling paradox. To overcome
the paradox, a relationship is first derived between shear stresses
and shear strains from second order considerations i.e. by con-
sidering an infinitesimal plate element in its shear-deformed state
in the presence of a compressive stress. In a subsequent step, an
FSM for inelastic thin-walled columns is formulated with the use
of this information.

2. Inelastic shear stiffness

The principles used in the derivation of the inelastic shear
stiffness were first proposed in Becque [4] and later amended in
Becque [3] and the reader is referred to these publications for a
more detailed description of the fundamentals.

Fig. 4 depicts a plate element under uniform axial compression
before local buckling. The plate consists of an inelastic material
and consequently, the total axial strain increment &, under an
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