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a b s t r a c t

In this paper global buckling (i.e., flexural, pure torsional, or flexural–torsional buckling) of thin-walled

columns is discussed. The considered problem is the most basic one: the column is simply supported

and subjected to a uniform concentric compressive force. The column’s cross-section is an arbitrary

open thin-walled cross-section. For the critical forces of this problem classical analytical solutions are

known. In the presented research alternative formulae are derived on the basis of modeling the

member as a set of flat plane elements (or strips). As it is found, the derivations can be carried out in

various ways, among which eight options are considered. The resulted critical force formulae are briefly

discussed in this paper. Extensive numerical studies are also completed; these studies are summarized

in a companion paper.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Analytical formula for the buckling of columns are known
since Euler published his solution for flexural buckling in 1744,
but torsional and flexural–torsional buckling can also be regarded
as a classical problem the solution of which is dated back to the
first half of the 20th century. These solutions, now, are part of the
engineering education and can be found in textbooks, e.g. in [1].

An important and characterizing feature of these solutions is that
they use a one-dimensional model for the column which will be
referred here as beam model. Using a beam model, the structure (e.g.,
frame or truss) is represented by lines (most frequently straight lines),
and to each point of the lines cross-sections are assigned, character-
ized by the cross-sectional properties. In other words, in the classical
beam model it is a priori assumed that the whole displacement field
of a beam or column can be expressed by the displacements of a
reference line (which reference line is most frequently and conve-
niently the line defined by the mass centers of the cross-sections).
The practical usefulness of the beam model is unquestionable: beam
model was the only model for frames and trusses for a long time, but
even today it is the model on which most frame and truss design is
normally based. Also, the above-mentioned closed-formed solutions
for column buckling, perhaps, would not have existed without the
beam model.

It is also important to observe, however, that the beam model
has its own limitations which prevent it to correctly model certain

phenomena. More exactly, the classical beam model is essentially
unable to consider any phenomena which involve the change of the
cross-section (e.g., local or distortional buckling, flange curling), or
any localized phenomena which affects primarily only a small part
of a cross-section (e.g., the effect of small holes). Therefore, more
sophisticated models (which are also more complicated) might be
useful even in case of beams or columns. And due to the recent
development of computers and numerical methods, the application
of more sophisticated models does not mean a major difficulty any
more, since finite element software packages are easily available and
widely used even in the everyday engineering practice.

Thin-walled members are certainly among the cases where
more sophisticated models might be useful, since local plate
buckling, distortional buckling, interacted buckling modes, flange
curling, shear lag, all significantly influence the behavior of a thin-
walled beam or column, while these phenomena are all out of the
scope of the classical beam model. A possible way for the analysis
is the application of the finite strip method (FSM) or the finite
element method (FEM) with using shell finite elements.

The common characterizing feature of FSM and shell FEM is
that the thin-walled member is modeled by flat plane elements
(in the simplest case rectangular elements), to which thicknesses
are assigned, and each element is able to sustain membrane
stresses (due to in-plane forces) and bending stresses (due to out-
of-plane actions). Depending on how these membrane and bend-
ing stresses are calculated, and depending on the practical
realization of the assumptions, various FSM and FEM applications
are possible and existing, still, recognizing the above-mentioned
important common feature (and for the sake of simplicity), this
type of structural model hence will be referred as shell model.
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Of course, the shell model has its own limitations, too, since
those phenomena where the change of a plate thickness (due to
the effect of forces, for example) would be important, cannot be
handled correctly. More importantly the model for the connection
of the flat parts is approximate (e.g., corners). Nevertheless, shell
models provide appropriate accuracy for most of the phenomena,
which statement is especially true for cold-formed steel members
with constant wall thickness and high width-to-thickness ratios.

Once shell model is used for a thin-walled member, it is a natural
idea to use it for the calculation of flexural (F), torsional (T), flexural–
torsional (FT) or lateral–torsional (LT) buckling, too, which buckling
modes will be referred here as global buckling. It is observed, however,
that by using a shell model for global buckling, perfect coincidence
with the classical analytical solution is hardly achieved, even though a
fine enough mesh is used and even though in case of a single member
the size of the problem cannot cause numerical inaccuracy.

The paper can be regarded as the extension of earlier works of
the author (see [2,3]), and has the aim to explore the reasons of the
existing differences between beam model and shell model global
column buckling solutions. Analytical solutions (i.e., formulae) are
derived on the basis of shell model assumptions which can
conveniently be compared to classical beam-model-based analytical
formulae. Since shell model may be realized in a number of more-
or-less different ways, the derivation of shell-model-based buckling
solution is carried out for various options. The resulted formulae
then highlight the importance of these options, and explain most of
the differences between beam model and shell model solutions.
Although the differences are small in many practical applications,
the shell-model-based formulae point out those cases where sig-
nificant differences between various solutions are possible. More-
over, it is believed that the presented research contributes in the
deeper understanding of global column buckling.

This paper concentrates on the derivations of analytical solu-
tions for shell-model-based critical forces. The theoretical con-
siderations, however, are supplemented by extensive numerical
studies in which various options of beam and shell-model-based
solutions (by using various tools, including well-known finite
element software) are analyzed and compared to one another.
The numerical studies are summarized in a companion paper (see
[4]). The results of the numerical studies justify the here-derived
shell-model-based formulae, demonstrate the differences, as well
as highlight the importance of a clear global buckling definition.

2. Derivation of shell model formula for global buckling

2.1. General

The aim is to derive an analytical expression for the critical
force of a thin-walled column with arbitrary open cross-section.

An illustration of the member as well as the applied global (X,Y,Z)
and local (x,y,z) coordinate systems are presented in Fig. 1.

The applied basic mechanical assumptions intend to imitate
those of a FSM or shell FEM solution. More exactly, the assump-
tion system closely follows that of the semi-analytical FSM, as
implemented in CUFSM [5] (see also [6,7]). However, some
additional options are also considered. In case of shell FEM, since
various implementations exist, the presented solution can be
regarded as an approximation, though it is believed that the
results well represent many FEM implementations, especially
those which use classical plate bending theory.

For the analyzed member it is assumed that: (i) the analyzed
member is a column, (ii) the column is prismatic, (iii) the column
is supported by two hinges at its ends, (iv) the column is loaded
by a compressive force (uniformly distributed along the cross-
section), (v) its material is linearly elastic, and (vi) it is free from
imperfections (residual stresses, initial deformations, material
inhomogenities, etc.).

As far as boundary support conditions are concerned, the
applied longitudinal shape functions correspond to globally and
locally pinned and free to warp support conditions. More pre-
cisely, for both column ends: (i) local transverse translations (i.e.,
in the x and z directions) are restrained, which also means that
global transverse translations (i.e., in the X and Z directions) are
restrained, (ii) translations in the y or Y direction can freely occur,
i.e., the cross-section warping is allowed, (iii) local twisting
rotations of the strips are restrained, which also means that
global twisting of the cross-section is restrained, (iv) and finally
local rotations about the strips’ local x-axis can freely occur, as
well as global rotations about global X- and Z-axis can freely
take place.

For the member deformation and displacements we assume
that (i) the member is modeled by 2D surface elements, hence
referred also as strips, (ii) in-plane (membrane) and out-of-plane
(plate bending) deformations are allowed, (iii) for the in-plane
behavior a classical 2D stress state is considered, (iv) for the out-
of-plane behavior a classical Kirchhoff plate is considered, and
(v) displacements are constrained to global buckling mode (as
defined in Section 2.2).

For the derivation of the formula the energy method is used.
The total potential energy of the member is expressed, and critical
force is searched by utilizing that in equilibrium the total
potential energy is stationary.

2.2. Definition for global buckling

In classical beam-model-based solutions for column buckling
three displacement degrees of freedom (DOF) are assumed: two
transverse translations and the rotation about the longitudinal
axis. This also suggests that cross-section distortion does not take

Fig. 1. Coordinate-systems, basic terminology.
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