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a b s t r a c t

In this paper, the collapse behavior of corrugated cross section beams subjected to three-point bending

is studied by using the finite element method (FEM). In order to estimate the energy absorption

characteristics of the beam, it is essential to estimate the relation between load and deflection in the

process of the beam collapse after the peak load. It is found that in the collapse process of the beam the

load is decreased by flattening of the cross section of the beam, and that the flattened shape can be

quantitatively expressed in terms of the curvature radius of the plane of the top and bottom of the cross

section. Based on the energy balance that external work is equated to the flattening deformation energy

of the cross section, a new method is proposed for predicting the relation between load and deflection.

The validity of the presented method is verified through a comparison with numerical results of FEM

analysis under various conditions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Guardrails prevent injury to people and harm to vehicles in
traffic accidents. The capacity of a guardrail to absorb collision
energy depends strongly on the corrugated shape of the cross
section. In the present study, we aim to investigate the collapse
mechanism of a corrugated beam, such as a guardrail, under
three-point bending. For the bending collapse of a thin-walled
beam with an I-shaped, V-shaped or U-shaped open cross section
[1–3], or with a circular or rectangular closed cross section [4–7],
collapse mechanisms based on the buckling and plastic hinges
have always been assumed in the analyses; however, the applica-
tion of such techniques to a corrugated section is difficult.
Therefore, a new simple collapse mechanism will be necessary
to establish design formulas for the load–deflection curve. In this
paper, the collapse behavior of a corrugated cross section beam in
the three-point bending is analyzed through numerical simula-
tion using the finite element method (FEM). After elucidating the
collapse mechanism, we shall establish design formulas for the
load–deflection curve and energy absorption performance of the
corrugated beam.

2. Analyzed model of FEM

Simplifying the guardrail geometry specified by the Japan Road
Association, we take a beam of thickness t and length L with a

corrugated cross section as shown in Fig. 1. In accordance with
the guardrail specifications, in this study, we assume L¼2000 mm
and wall thickness of t¼2.3 mm, 3.2 mm, and 4.0 mm. The
commercial FEM analysis package MSC. Marc is used to simulate
the quasi-static deformation of the beam when a rigid pillar of
diameter D¼20 mm pushes the beam perpendicularly at a dis-
tance a from the left edge of the beam. The beam is simply
supported at both ends as shown in Fig. 1. Here, we disregard the
friction between the beam and the rigid pillar.

In modeling the materials, we consider only isotropic and
homogeneous elastic-perfectly plastic material that conforms to
the von Mises yielding criterion with Young’s modulus E and yield
stress ss; in this study, we assume SS400 steel, which is actually
used to construct guardrails, with E¼206 GPa, ss ¼ 245 MPa, and
Poisson’s ratio n¼ 0:3.

In formulating the nonlinear behavior, the updated Lagrange
method is used to consider large deformation, and the Newton–
Raphson method is used in the modified calculation to satisfy the
equilibrium equation. To ensure smooth deformation in the
modeling, the model was discretized using quadrilateral, bilinear
thick shell elements measuring 10�10 mm2.

3. Mechanism of collapse deformation

Fig. 2 shows the relation between the deflection d and the load
P applied to the rigid pillar after the pillar touches the beam with
thickness t¼4.0 mm at the distance a¼L/2 from the left edge of
the beam. As the figure shows, the load first increases with the
deflection d and reaches a peak load Pcr. Then, as the deflection d
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further increases after reaching the peak load Pcr, the load
decreases with collapse of the beam. The relation between load
and deflection is important in calculating the energy absorption
by the guardrail. As shown in Fig. 2, the relation between load and
deflection after the peak load is important for calculating energy
absorption because the deflection is small before the peak load. In
order to predict the load–deflection curve after the peak load, an
appropriate deformation mechanism of the beam after collapse is
required. For thin-walled sections, the collapse mechanism based
on plastic hinge formation, which is proposed by Kecman [4], has
so far been adopted to predict the relation between load and
deflection after bending collapse [5–7]. However, this mechanism
cannot be applied to the present study, because a plastic hinge
does not appear in the beam collapse process as shown in Fig. 3.
As an example, Fig. 3 shows the deformation behavior of the beam
model used in Fig. 2 and the contour map of the equivalent plastic
strain. In the figure, the color becomes closer to white as the
equivalent plastic strain becomes larger. Because of the symmetry,
only half of the beam is shown in the figure; the circles indicate the
points E, F and G at X ¼ L=2, as shown in the cross section in Fig. 1(b).
As the figure shows, the plastic zone (white area) spreads with
deflection d in the direction of beam length, and the deformation is
global and no localized plastic hinges form. Such a deformation
behavior in the bending collapse of the corrugated cross section beam
cannot be explained by the collapse mechanism of Kecman [4], where
a local buckling should occur and then plastic hinges should appear
locally in the compressive region and the deformation proceeds with
bending of the plastic hinges. Therefore, in the present study, a new

simple method is proposed to predict the relation between load and
deflection.

3.1. Flattening of cross section described by R1

For the beam used in Figs. 2 and 4 presents the deformed cross
section at X¼L/2 for deflection of d¼ 50 mm, 100 mm, and
150 mm. As shown by the variation of the angle a between the
horizontal line and the plane EF in Fig. 4, the flattening of the
cross section proceeds as a result of the increase in deflection d. In
other words, the decrease in the load after the peak load can be
attributed to the flattening of the cross section of the beam.

Considering Fig. 4, we model the flattening as shown in
Fig. 5(b): the angle b at the intersection remains unchanged;
the slopes AB, CD, EF, and GH do not deform and simply rotate;
the upper surfaces BC and FG and the lower surface DE exhibit
bending deformation with an arc of radius R1.
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Fig. 1. Analyzed problem: (a) a rigid pillar pushes the beam at a distance of a;

(b) cross section of the beam.
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Fig. 2. Relation of P and d obtained from FEM for a case of a¼L/2 and t¼4.0 mm.
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Fig. 3. Deformation of the beam used in Fig. 2 around X¼L/2.

Fig. 4. Deformed cross section of the beam used in Fig. 2 at X¼L/2. (a) d¼50 mm,

(b) d¼100 mm and (c) d¼150 mm.
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