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a b s t r a c t

This paper presents the formulation and validation of a geometrically and physically (J2 plasticity) non-

linear Generalised Beam Theory formulation, intended to calculate accurate non-linear elastoplastic

equilibrium paths of thin-walled metal bars and associated collapse loads. This formulation extends

previous work (Gonc-alves and Camotim, 2011) [1] by including the geometrically non-linear effects.

The plate-like bending strains are assumed to be small (as in all GBT formulations), but the membrane

strains are calculated exactly. Both stress-based and stress resultant-based GBT approaches are

developed and implemented in a 3-node beam finite element. The stress-based formulation is generally

more accurate, but the stress resultant-based formulation makes it possible to avoid numeric

integration in the through-thickness direction of the walls. In order to show the potential of the

proposed formulation and resulting finite element, several numerical results are presented and

discussed. For validation purposes, these results are compared with those obtained with standard

2D-solid and shell finite element analyses.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Generalized Beam Theory (GBT) constitutes an extremely
efficient and versatile tool to solve a wide range of structural
problems involving thin-walled bars. GBT was first proposed by
Schardt more than 40 years ago [2,3],1 but its dissemination and
widespread application initiated only after the first publications
in the english language [4,5]. Since then, various researchers have
been working with GBT (e.g., [6–8]), helping establish it as an
efficient alternative to the finite strip and shell finite element
methods, with a considerable amount of the new contributions
being authored by Camotim and co-workers (see, e.g., the state-
of-the art reports [9–12]).

Concerning the application of GBT to elastoplastic materials,
only a limited number of studies have been presented. The
authors have proposed a formulation aiming at the calculation
of local/distortional/global plastic bifurcation loads of metal thin-
walled members [13–15]. This formulation is based on the linear
stability analysis concept, where pre-buckling displacements are
discarded, and only trivial pre-buckling uniaxial stress fields were
dealt with. More recently, the authors presented a geometrically

linear GBT formulation for the determination of non-linear
elastoplastic equilibrium paths [1] where, besides the conven-
tional (stress-based) GBT approach, a novel stress resultant-based
formulation was proposed, which employs the Ilyushin yield
function [16]. Although the stress-based formulation was found
to be generally more accurate, it was also shown that the stress
resultant-based formulation leads to significant savings from a
computational point of view, namely (i) it does not require
numeric integration in the through-thickness direction and
(ii) makes it possible to enforce constraints to the stress resultant
and work-conjugate strain field as in linear elastic GBT formula-
tions, thus making it possible to discard some stress components
and, more important, to reduce the number of admissible defor-
mation modes (degrees of freedom).

In this paper, the previous formulation is extended to the
geometrically non-linear setting, in order to make it possible to
calculate accurately non-linear elastoplastic equilibrium paths
and associated collapse loads. Both the standard stress-based
and the stress resultant-based formulations are developed and
implemented in a 3-node beam finite element. GBT formulations
able to calculate geometrically non-linear elastic equilibrium
paths were first developed by Miosga [17] and, more recently,
by Silvestre and Camotim [18] and Sim~ao [19]. In these formula-
tions, geometrically non-linearity is included by adopting a total
Lagrangian description and additively decomposing the strain
terms into Green–Lagrange membrane strains and small-strain
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bending. This approach is followed in the present paper although,
in contrast with the previous formulations, the membrane strains
are now calculated exactly, i.e., all non-linear membrane strain
terms are included. Since small strains are assumed for the
bending terms, the geometrically non-linear GBT formulations
are generally restricted to the small-to-moderate displacement
range but, as shown in the examples presented in this paper, the
accuracy and computational efficiency of GBT is preserved within
this range. For moderate-to-large displacements, it is better to
adopt kinematic descriptions based on geometrically exact beam
theories and employ rotation tensors to describe the cross-section
rotation [20,21]. In order to illustrate the potential of the
proposed formulation, several examples are presented and dis-
cussed. For validation and comparison purposes, 2D-solid/shell
large displacement/small strain finite element analysis [22]
results are employed.

Concerning the notation, (i) scalars are represented in italic

and (ii) vectors and matrices in bold italic. Partial derivatives are
indicated by subscripts following a comma, e.g., f ,x ¼ @f=@x.
A virtual variation is denoted by d and an incremental/iterative
variation by D. Where no distinction is necessary, variations may
be denoted by d.

2. Non-linear GBT fundamental equations and finite element
implementation

2.1. Kinematic description

For the purpose of describing the configuration of a given thin-
walled member, the reference (straight) configuration depicted in
Fig. 1 is employed, where x, y and z are wall local axes along the
longitudinal, cross-section mid-line and thickness directions,
respectively. The current configuration of the member is mapped
by the displacement vector Uðx,y,zÞ which, for a given wall, is
expressed as

Uðx,y,zÞ ¼

Ux

Uy

Uz

264
375¼ uðx,yÞ�zw,xðx,yÞ

vðx,yÞ�zw,yðx,yÞ

wðx,yÞ

264
375, ð1Þ

where u, v, w are the wall mid-surface displacement components
along x, y and z, respectively, given by

uðx,yÞ ¼ ut
ðyÞ/,xðxÞ,

vðx,yÞ ¼ v t
ðyÞ/ðxÞ,

wðx,yÞ ¼wt
ðyÞ/ðxÞ, ð2Þ

with (i) the column vectors uðyÞ, vðyÞ, wðyÞ containing the GBT
deformation mode displacement components along x, y and z,
respectively, calculated from the ‘‘GBT cross-section analysis’’
(see, e.g., [3,23]), and (ii) the column vector /ðxÞ containing their
amplitude functions along the beam length. Note that the classic
GBT description is preserved, namely:

(i) The displacements of material points located outside the wall
mid-surface (za0) are obtained from Kirchhoff’s plate theory
assumption in the small displacement range. This simplifica-
tion is not too restrictive, since it only affects the bending
terms (not the membrane ones), which will be calculated
assuming also small displacements, as mentioned previously.
On the other hand, it has the advantage of making the
formulation insensitive to plate-like shear locking.

(ii) The warping displacements u are associated with /,x rather
than with /, in order to make it possible to enforce null
membrane shear strains in the geometrically linear GBT for-
mulation (gM

xy ¼ 0, i.e., Vlasov’s assumption). This obviously does
not constitute a limitation for the geometrically non-linear
formulation and is, therefore, adopted. In alternative, u could
be associated with /, which has the advantage of lowering the
continuity requirement for the amplitude functions of the
deformation modes involving warping displacements. However,
the continuity requirement is still maintained for the modes
with wa0, due to Kirchhoff’s assumption. A complete discus-
sion of this matter was presented in [1].

By incorporating (2) into (1), one obtains

Uðx,y,zÞ ¼NU ðyÞ
/ðxÞ

/,xðxÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

U

þzNUðyÞ
/ðxÞ

/,xðxÞ

" #
, ð3Þ

where U is the displacement vector of the wall mid-surface and
the auxiliary matrices read

NU ðyÞ ¼

0 ut

v t 0

wt 0

264
375, NU ðyÞ ¼ �

0 wt

wt
,y 0

0 0

264
375: ð4Þ

If the beam initial configuration is not straight, it is useful to
define the displacements between the reference and initial con-
figurations through

U0ðx,y,zÞ ¼NUðyÞ
/0ðxÞ

/0,xðxÞ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

U 0

þzNUðyÞ
/0ðxÞ

/0,xðxÞ

" #
, ð5Þ

and the column vector /0ðxÞ contains the amplitude functions
required to describe the initial configuration.

Finally, the displacements between the initial and current
configurations are given by

Û ðx,y,zÞ ¼U�U0 ¼NU ðyÞ
/̂ðxÞ

/̂ ,xðxÞ

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

^
U

þzNU ðyÞ
/̂ðxÞ

/̂ ,xðxÞ

24 35, ð6Þ

with /̂ðxÞ ¼/ðxÞ�/0ðxÞ.

2.2. Strains

The relevant strain components for each wall are grouped in

vector Et
¼ ½Exx Eyy 2Exy�. An additive decomposition E¼ EM

þeB is

assumed, where ðEM
Þ
t
¼ ½EM

xx EM
yy 2EM

xy� are Green–Lagrange mem-

brane strains and ðeBÞ
t
¼ ½eB

xx eB
yy gB

xy� are small bending strains.Fig. 1. Arbitrary thin-walled member geometry and local coordinate systems.
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