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a b s t r a c t

A new approach is illustrated for the cross-sectional analysis to be performed in the context of the

Generalised Beam Theory (GBT). The novelty relies in formulating the problem in the spirit of

Kantorovich’s semi-variational method, namely using the dynamic modes of an unconstrained planar

frame as in-plane deformation modes. Warping is then evaluated from the post-processing of these

in-plane modes, thus reversing the strategy of the classical GBT procedure. The new procedure does not

require several steps of the classical algorithm for the determination of the conventional modes, in

which bending, shear and local modes are evaluated separately, and is applicable indifferently to open,

partially-closed and closed sections. The efficiency and ease of use of the method are outlined by means

of two examples, aimed to describe the linear–elastic behaviour of thin-walled members.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Generalised Beam Theory (GBT) is a powerful tool for the
elastic and buckling analysis of thin-walled members (TWM). The
basic ideas of the method have been originally proposed by
Schardt [1,2] and disseminated in English by Davies and co-
workers [3–7] while its large diffusion in the scientific commu-
nity is due to the strong impulse given to it in the last decade by
Camotim and co-workers [8–27]. They generalised the method to
include new aspects, not present in the original formulation, and
combined it with a FE approach [8–10], so that GBT is now
applicable to anisotropic members [11], branched open sections
[12], closed or partially closed sections [13], circular sections [14],
non-standard support conditions [15,16], frames of TWM [17],
buckling problems [10,13,14,18–22], linear dynamic problems
[23,24], and post-buckling problems [25–27]. In recent years,
Adany and Schafer [28,29] and Casafront et al. [30] applied the
principles at the basis of the GBT to reduce the number of
freedoms required in performing buckling investigations using
the finite strip method and finite element method, respectively.

As well-known, GBT considers a TWM as an assembly of
(generally, but not necessarily, flat) thin plates, free to bend in
the plane orthogonal to the member axis. Thus, GBT accounts for
deformable cross-sections, differently from the classical Vlasov
theory [31] in which the cross-section keeps its original shape.
The basic idea of the method consists in describing the displace-
ment field of the TWM as a linear combination of assumed

‘deformation modes’ of the cross-section (including in-plane
and warping components), and ‘amplitude modes’, which are
unknown functions depending on the axial coordinate. A varia-
tional principle, as the virtual work equation, provides the weak
formulation of the problem, leading to a system of ordinary
differential equations in the unknown amplitudes, with the
relevant boundary conditions. These equations, equal in number
to the deformation modes considered, generalise the classical
Vlasov beam theory, where the latter can be described using four
amplitude functions, each associated to a rigid motion of the
section, namely three translations (two flexures and an extension)
and one rotation (torsion) around the shear centre. Even if not
initially noted by Schardt, this approach falls within Kantorovich’s
semi-variational method, aimed at reducing the dimensionality of
a problem through a technique of partially-assumed modes. Thus,
in the case of the GBT, a three-dimensional continuous problem is
transformed into a vector-valued one-dimensional problem. In
particular, the GBT method consists of two phases: (1) the choice
of the deformation modes, referred to as ‘cross-sectional analysis’,
and (2) the solution of the amplitude equations, denoted as
‘member analysis’. The fundamental step of this method relies
on its ability to determine a suitable set of deformation modes.

A brief overview of the essence of the classical GBT is provided in
the following, partly for readers not fully familiar with this approach,
to highlight the procedure involved in the evaluation of the conven-
tional deformation modes and to better outline the contribution
of the proposed work. Throughout this paper and consistently with
the definitions provided in [8], conventional modes are assumed
to include the rigid-body modes, the distortional ones, the local
(bending) ones complemented, when dealing with closed sections,
with a shear mode to depict the case of pure torsional shear flow.
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The first step of the GBT formulation is to discretise the cross-section
of a member in plate segments (with nodes inserted at their ends)
along which linearly varying warping functions are assumed to exist.
By following the methodology commonly used with the direct
stiffness method, unit warping displacements are applied to one
node at the time, while keeping all the remaining ones equal to zero,
thus creating a set of ‘warping modes’. The corresponding in-plane
tangential displacements of the segments are determined for each of
these modes based on the zero-shear Vlasov condition (valid for open
cross-sections). This procedure leads to a loss of compatibility at the
‘natural nodes’ (i.e. at the corners of the plates). A rigid-body
kinematic problem is then solved to restore the compatibility of the
translations by applying normal displacements and rotations to each
plate segment. After this, the force method is used to restore
compatibility of the rotations at the natural nodes, while treating
the plate segments as (deformable) continuous members and assum-
ing their corners restrained by pinned supports. With this procedure,
a basis of linearly independent modes (with number equal to the
number of nodes of the section) is created. This set of ‘warping
modes’, however, is not exhaustive, since it is associated to deforma-
tions in which the nodes translate in the cross-section plane. ‘Bending
modes’, instead, in which the plate deforms by leaving the corners
(practically) immovable and without warping, cannot be determined
with this procedure. The way that GBT addresses this problem is to
restart a new calculation in which unit displacements are assigned,
this time normal to the plate segments, at ‘non-natural’ intermediate
nodes (i.e. not at the corners), followed, also in this instance, by the
solution of the elastic problem of a continuous member. This second
set of modes, however, does not include deformations of closed

sections in which the displacements are essentially tangential,
triggering shear deformations of the plates, and therefore referred
to as ‘shear modes’. To determine these latter ones another ad hoc

procedure needs to be applied, which induces unit tangential
displacements to each segment of the cross-section belonging to
closed cells (based on the considerations that membrane shear strains
are negligible in segments included in open branches).

The different deformation modes constructed, based on the
procedures previously outlined, are local-type in nature because
they involve nontrivial displacements only in a few adjacent
segments. Remaining consistent with their derivations, these
modes could be used in this form, in a similar manner as, for
example, the finite strip approach is applied to TWM analysis or
splines are used to describe extended functions (e.g., [32–36]).
Such a local-type representation, however, is not convenient, if
one desires to use few significant modes to capture the main
structural behaviour. Therefore, a change of basis is then per-
formed in the classical GBT to obtain global type deformation
modes. This is obtained as the eigenvectors of a properly chosen
eigenvalue problem, able to simplify the amplitude equations.

It is in authors’ opinion that an unified procedure for the
determination of the conventional deformation modes would con-
tribute to a wider diffusion and use of the GBT approach. In this
context, a new version of the method is proposed here, which, in
the spirit of the semi-variational method selects the conventional
deformation modes directly defined on the whole domain and
chosen as the eigenvectors of a positive semi-definite eigenvalue
problem. The free dynamics of the unconstrained planar frame,
represented by the plate segments forming the cross-section placed
at their mid-lines, is chosen as the eigenvalue problem. Since the
frame is free in its plane, it possesses rigid motions that account for
the Vlasov beam theory, and flexural modes which account for
deformation modes. Once the planar modes are determined, e.g.
using a standard finite element analysis, even performed with a
commercial software, the cross-sectional analysis is completed by
evaluating the corresponding warping displacements based on
conditions enforced on the shear strain. Among these, the purely
extensional mode appears as an arbitrary quantity rising from
integration. In this way, the strategy used by the classical theory
is reversed, in the sense that in plane-components are evaluated
first, and warping components successively.

This paper starts by briefly recalling the basis of the GBT,
limiting the description to the first-order analysis. This is fol-
lowed by the new proposed cross-sectional analysis and its ease
of use is outlined by means of two applications on simply-
supported TWM. For clarity, the procedure proposed for the
calculation of the warping displacements, starting from the in-
plane ones, is detailed with an example in Appendix A.

2. Basis of the GBT approach

A generic thin-walled-member is considered with (a) open,
(b) closed or (c) partially-closed cross-section formed with flat plates
(Fig. 1). The displacement field u(s,z) of an arbitrary point P(s,z) lying
in the mid-plane of the section thickness is expressed as (Fig. 2):

uðs,zÞ ¼ uðs,zÞesðsÞþvðs,zÞeyðsÞþwðs,zÞezðsÞ ð1Þ

where s is the curvilinear abscissa (if necessary defined on several
branches) along the section mid-line C, z is the coordinate along the
member axis, es(s), ey(s) and ez(s) are unit vectors in the tangential,
normal and bi-normal directions at the abscissa s, respectively, and
u(s,z), v(s,z) and w(s,z) are the displacement components in the
same triad.

2.1. Displacement and strain fields

In the framework of the GBT, and making use of Kantorovich’s
semi-variational method, the displacement components of points
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Fig. 1. Generic thin-walled cross-sections: (a) open cross-section; (b) closed cross-section; and (c) partially-closed cross-section.
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