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a b s t r a c t

This paper presents a beam formulation for large displacement analysis of beam-type structures with

flexible connections. Within the framework of updated Lagrangian incremental formulation and the

nonlinear displacement field of thin-walled cross-sections, which accounts for restrained warping and

the second-order displacement terms due to large rotations, the equilibrium equations of a straight beam

element are firstly developed. Due to the nonlinear displacement field, the geometric potential of

semitangential moment is obtained for both the internal torsion and bending moments, respectively.

Material nonlinearity is introduced for an elastic-perfectly plastic material through the plastic hinge

formation at finite element ends. To account for the flexible connection behaviour, a special transforma-

tion procedure is developed. The numerical algorithm is implemented in a computer programme and its

reliability is validated trough several test examples.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the large displacement or second-order analysis of thin-
walled beam-type structures, two extreme idealisations for con-
nections are frequently used: fully rigid and frictionless pinned
[1–5]. Such models simplify the large displacement analysis
significantly, but often cannot represent the real structural beha-
viour because real connections exhibit a flexible behaviour which
falls in between the two idealised cases. Flexibility of connections
is the result of a complex interaction among various components
of the connection construction itself [6–13]. Therefore, conven-
tional numerical analysis procedures must be broadened by
incorporating real connection characteristics in order to replace
the idealised connection approach, which improves the accuracy
of structural analysis [14–20].

To perform the large displacement analysis for a beam-type
structure, a nonlinear beam model should be made available,
with which the load–displacement behaviour of a frame structure
can be obtained by one of the incremental description [21–24].
Each description utilises a different structural configuration for
describing the system quantities, based on which a set of non-
linear equilibrium equations can be derived for the structure. This
set can be further linearised and solved using some incremental-
iterative scheme, which consists of three main phases. The first or

predictor phase comprises evaluating the overall structural stiff-
ness and solving for the displacement increments from the
approximated incremental equilibrium equations for the struc-
ture. Using the standard transformation process, displacement
increments of each finite element can be determined immedi-
ately. The second or corrector phase involves the updating of
nodal coordinates as well as orientations of cross-sections and
axes of each element, and the determination of the exact nodal
forces for each element using a particular force recovery algo-
rithm. The third or checking phase is to check if the convergence
criterion of iteration adopted is achieved in the current config-
uration by comparing with the preset tolerance value.

This paper presents an elastic–plastic beam element for the
large displacement analysis of beam-type structures composed of
the straight and prismatic thin-walled beam members and flexible
joints. The geometric nonlinearity is first analysed for the case of
linearly elastic material behaviour. In this, it is assumed that the
cross-section is not deformed in its own plane, but is subjected to
warping in the longitudinal direction. Shear strains in the middle
surface are neglected. Displacements are allowed to be large, but
strains are assumed to stay small. External loads are static and
conservative. Internal moments are represented as the stress
resultants calculated by the Euler–Bernoulli–Navier theory for
bending and the Timoshenko–Vlasov theory for torsion [25,26].
The element geometric stiffness is derived using the updated
Lagrangian (UL) description and the nonlinear displacement field
of a thin-walled cross-section, which includes the second-order
displacement terms due to large rotation effects [27,28]. In such
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a way, the incremental geometric potential corresponding to the
semitangential moment [29–31] is obtained for the internal
torsion and bending moments, respectively, thereby ensuring the
moment equilibrium conditions to be preserved at the joint to
which beam members of different orientations are connected. The
generalised displacement control method is employed as an
incremental-iterative solution scheme [32]. At the end of the each
iteration, the updating of nodal orientations is performed using
the transformation rule which applies for semitangential incre-
mental rotations [33], while the force recovering is performed
according to the conventional approach (CA) [34].

Elastic–plastic behaviour is introduced by the plastic hinge
concept [35,36], in the sense that plastic deformations are assumed
to be confined to zero-length plastic hinges at the beam element
ends, while the material is assumed to be elastic-perfectly plastic
with no strain hardening. Supposing the existence of a continuous
and convex single-function yielding surface in terms of the beam-
stress resultants obtained by the adopted force recovery algorithm,
a plastic reduction matrix is introduced into the incremental
equilibrium equations of the beam element [37,38].

A hybrid element, hereafter called the SR element, composed of
the aforementioned nonlinear beam element and dimensionless
linear/nonlinear springs added at element nodes is introduced for
modelling the structures at which flexible connections may occur.
One side of each spring is connected to a node of the beam element,
while the other side is connected to a global node. Using the SR
beam element, connections are no longer assumed to be fully rigid.

2. Basic considerations for thin-walled beam

2.1. Kinematics of beam

The deformation of an initially straight prismatic beam with a
thin-walled cross-section of a wall of thickness t is considered. For
the sake of simplicity, it is assumed that the shear centre and the
centroid of the cross-section coincide. A right-handed Cartesian
coordinate system (z, x, y) is chosen in such a way that z-axis
coincides with the beam axis passing through the centroid O of
each cross-section, while the x- and y-axes are the principal
inertial axes of the cross-section. Incremental displacement
measures of a cross-section are defined as

wo ¼woðzÞ, uo ¼ uoðzÞ, vo ¼ voðzÞ, jz ¼jzðzÞ,

jx ¼�v0o ¼jxðzÞ, jy ¼ u0o ¼jyðzÞ, y¼�j0z ¼ yðzÞ ð1Þ

where wo, uo and vo are the rigid-body translations of the cross-
section associated with the centroid in the z-, x- and y-directions,
respectively; jz, jx and jy are the rigid-body rotations about
the z-, x- and y-axis, respectively; y is a parameter defining the
warping of the cross-section. The superscript ‘prime’ indicates the
derivative with respect to z.

If rotations are small, the incremental displacement field of a
thin-walled cross-section contains only the first-order displace-
ment terms [39]:

uz ¼w¼wo�y v0o�x u0o�o j0z;
ux ¼ u¼ uo�y jz, uy ¼ v¼ voþx jz ð2Þ

in which w, u and v are the linear or first-order displacement
increments of an arbitrary point on the cross-section defined by
the position coordinates x and y and the warping function o(x, y).
If the assumption of small rotations is not invalid, then the
second-order displacement increments [28]:

~uz ¼ ~w ¼ 0:5ðxjzjxþyjzjyÞ;

~u x ¼ ~u ¼ 0:5½�xðj2
z þj

2
y Þþyjxjy�

~uy ¼ ~v ¼ 0:5½x jx jy�y j2
z þj

2
x

� �
� ð3Þ

due to large rotations should be added to those from Eq. (2). The
corresponding incremental Green–Lagrange strain tensor can be
written as

eijffieijþZijþ ~eij; eij ¼ 0:5ðui,jþuj,iÞ;

Zij ¼ 0:5uk,i uk,j; ~eij ¼ 0:5ð ~ui,jþ ~uj,iÞ ð4Þ

in which the last strain term is due to large rotations. According to
the geometrical hypothesis of in-plane rigidity of the cross-
section, the strain components e11¼exx, e22¼eyy and 2e12¼2exy¼

gxy in Eq. (4) should be equal to zero.

2.2. Stress resultants

In the conventional engineering theories for bending and
torsion, the stress components sx¼sy¼txy¼0 are assumed to
vanish, and the stress resultants acting on each cross-section can
be defined as follows [25,26]:

Fz ¼

Z
A
sz dA; Fx ¼

Z
A
tzx dA; Fy ¼

Z
A
tzy dA

Mz ¼

Z
A
tzyx�tzxy
� �

dA¼ TSVþTo; Mx ¼

Z
A
szydA

My ¼�

Z
A
szxdA ; Mo ¼

Z
A
sz odA; K ¼

Z
A
szðx

2þy2ÞdA ð5Þ

where Fz represents the axial force, Fx and Fy are the shear forces,
Mz is the torsion moment, Mx and My are the bending moments
with respect to the x- and y-axis, respectively, Mo is the bimo-
ment, while K is the Wagner coefficient. As can be seen from the
preceding equation, the torsion moment consists of two parts TSV

and To representing the St. Venant or uniform torsion moment
and the warping or non-uniform torsion moment, respectively.

By assuming the stress–strain relations in the linearised
incremental sense as sz¼E e33¼E ez, tzx¼2 G e31¼G ezx and
tzy¼2 G e32¼G ezy, where E and G are the elastic and shear
moduli, Eq. (5) can be manipulated to yield:

Fz ¼ EA
dwo

dz
; Mx ¼�EIx

d2vo

dz2
, My ¼ EIy

d2uo

dz2
; TSV ¼ GIt

djz

dz

Mo ¼�EIo
d2jz

dz2
z

; K ¼ FzazþMxaxþMyayþMoao: ð6Þ

Eq. (6) represents the linearised incremental force–displacement
relationships, in which A is the cross-sectional area, Ix and Iy are
the principal moments of inertia about x- and y-axis, respectively,
It is the St. Venant torsion constant, Io is the warping moment of
inertia, while the coefficients az, ax, ay and ao are the correspond-
ing cross-section parameters provided in Ref. [39]. The shear
forces as well as the non-uniform torsion moment are treated as
reactive forces and can be determined as Fx ¼�dMy=dz,
Fy ¼ dMx=dz and To ¼ dMo=dz.

3. Finite element formulation

3.1. Incremental description

According to the incremental description, it is necessary to
subdivide a load–deformation path of a finite element into a
number of steps or increments where three equilibrium config-
urations can be recognised: the initial configuration C0, the last
calculated equilibrium configuration C1 and current unknown
configuration C2. By the UL formulation adopted in this paper,
each system quantity occurring in C2 can be expressed with
reference to C1. Hereafter, a left superscript denotes the config-
uration in which a quantity occurs, and a left subscript the
configuration in which the quantity is measured. If the super-
script and subscript of a quantity are same, the latter may be
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