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ABSTRACT

The paper presents the application of the new stiffener element with seven degrees of freedom per node
and the subsequent application in determining frequencies, mode shapes and buckling loads of different
stiffened panels. In structural modelling, the stiffener and the plate/shell are treated as separate
elements where the displacement compatibility transformation between the seven and six degrees of
freedom nodes of these two types of elements takes into account the torsion-flexural coupling in the
stiffener and the eccentricity of internal (contact) forces between the beam-plate/shell parts. The model
becomes considerably more flexible due to this coupling technique. The development of the stiffener is
based on a general beam theory, which includes the constraint torsional warping effect and the second-
order terms of finite rotations. Numerical tests are presented to demonstrate the importance of torsion
warping. As part of the validation of the results, complete shell and the usual six degrees of freedom per
node shell-beam finite element analyses were made for stiffened panels.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many engineering structures consist of stiffened thin plate and
shell elements to improve the strength to weight ratio. The
buckling and vibration characteristics of stiffened plates and
shells are of considerable importance to mechanical and structur-
al engineers.

Among the known solution techniques, the finite element
method is certainly the most favourable. Using the technique
where stiffeners are modelled by beam finite elements, Jirousek
[1] formulated a four-node isoparametric beam element including
transverse shear and Saint-Venant torsion effects. More recent
studies on dynamic and buckling problems of stiffened plates and
shells are available in Refs. [2-5]. It is a common feature of these
finite element-based methods that in order to attain displacement
continuity, a rigid fictitious link is applied to connect one node in
the plate element to the beam node shearing the same section.
This approach neglects the out-of-plane warping displacements of
the beam section and, in such cases, the usual formulation
overestimates the stiffener torsional rigidity. To eliminate this
problem Patel et al. in Ref. [5] introduced a torsion correction
factor which is analogous to the shear correction factor commonly
used in the shear deformation beam theory.

The main objects of the present paper is to propose an efficient
procedure modelling the connection between the plate/shell and
the stiffener, and as part of it the constraint torsion effect in the
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stiffener. Apart from Refs. [6,7], where the so-called two interface
line concept was used, the author could not find any work in the
literature involved in the examination of constrained torsion in
the stiffener of complex plate/shell structures. However, the effect
is obvious, especially in terms of dynamic and stability phenom-
ena when the global characteristics of a structure are investigated,
such as frequencies, mode shapes, or critical loads causing a loss
of stability. Investigations of stand-alone beam structures proved
that an approximate or more accurate modelling of the torsional
stiffness, eccentricity, or mass distribution can considerably
modify the results. Theoretically—and practically as well, if there
is adequate capacity available—beam-type components in com-
plex structures can also be modelled by flat shell, or even spatial
finite elements. Consequently, the size of the model and the
number of degrees of freedom (dof) will change considerably,
increasing the time required for calculations and making the
interpretation and evaluation of results more difficult. It is a better
solution if the properties of components are improved and the
ranges of phenomena possible to be modelled are increased at the
element level.

As the main objective of this paper is to study the effect of
constraint torsion and the coupling methods, the shear deforma-
tion of the beam is neglected and the formulation of the stiffener
is based on the well-known Bernoulli-Vlasov theory. For the finite
element analysis, cubic Hermitian polynomials are utilized as the
beam shape functions of lateral and torsional displacements. The
stiffener element has two nodes with seven dof per node. In order
to maintain displacement compatibility of the seven and six dof
nodes of the beam and the stiffened element, a special
transformation is used, which includes the coupling of torsional
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Nomenclature

A cross-section area of stiffener

B bimoment

E Young’'s modulus

F, F,, F, initial external forces

G shear modulus

I, Is principal moments of inertia

Iy, warping constant of stiffener

J St. Venant’s torsion constant

L beam element length

M,, M; bending moments about r, s axes
M, torsional moment

M, M3, M3 internal moments with respect to shear centre axes
My, Wagner’s moment

N;, N;, Nynodes of beam element

N axial force

T, s principal axes of stiffener section
S shear centre of stiffener section
1] average of axial displacement

u, v, w displacement increments of the shear centre S

V, Vs shear forces
VNG Zne  hode-centriod eccentricity

Yes, Zcs  centriod-shear centre eccentricity

Ysp Zsp  load eccentricity from shear centre
Kee element external load stiffness matrix
Kgi element geometric stiffness matrix

k; element linear stiffness matrix

m element mass matrix

w work done by load increments

o, f,y rotation increments of the shear centre S
Br Bs» B Wagner's mono-symmetry properties
0 stiffener-plate area ratio parameter

@ torsional warping function

9 warping parameter (rate of twist)

TG energy due to initial stress resultants
TGe energy due to initial external loads

7 elastic strain energy

o mass density

A buckling load factor

w natural frequency of vibration

and bending rotations and the eccentricity of internal forces
between the stiffener and the plate elements.

2. Beam element
2.1. Kinematics of beam

In this work, the basic assumptions are as follows: the beam
member is straight and prismatic, the cross-section is not
deformed in its own plane but is subjected to torsional warping,
rotations are large but strains are small, the material is
homogeneous, isotropic and linearly elastic.

Let us have a straight, prismatic beam member with an
arbitrary cross-section as it is shown in Fig. 1. The local x-axis of
the right-handed orthogonal system is parallel to the axis of the
beam and passes through the end nodes N; and N,. The co-
ordinate axes y and z are parallel to the principal axes, marked as r
and s. The positions of the centroid C and shear centre S in the
plane of each section are given by the relative co-ordinates ync, znc
and ycs, Zcs. The external loads are applied in points P located ysp
and zsp from the shear centre.

Based on semitangential rotations, the displacement (specifi-
cally, the incremental displacement) vector consisting of transla-
tional, rotational and warping components is obtained as

u=U+U" 1)

Zsp

Sier) N
i
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Fig. 1. Beam element local systems and eccentricities.

where U and U* are the displacements corresponding to the linear
part and second-order terms due to large rotations:

Ux u+ 3¢ B(s — zcs) — y(r — Yes)
u=1|Uy| = v + —0US — Zcs) , (2)
U, w our —Yes)
Uy af(r — yes) + oy(s — zcs)
u = U | 22 @ 920 - yeo) + By — 2c9) |. (3)
U; By(r = yes) — (2% + B2)(s — zcs)

Displacement parameters are defined at the shear centre S as
shown in Fig. 2. Accordingly, u, v and w are the translations of
point S and «, ff and y denote rigid body rotations about the shear
centre axes parallel to x, y and z, respectively. The small out-of-
plane torsional warping displacement is defined by the 3(x)
warping parameter and the ¢(r,s) warping function normalized
with respect to the shear centre. In the following, the warping
function ¢ and the shear centre location are the same as in the
case of free torsion. For thin-walled sections ¢ = —w, the sector
area co-ordinate. When the shear deformation effects are not
considered, the Euler-Bernoulli and the Vlasov internal kinema-
tical constraints are adopted as

B=—w, 9=, (4)

where the prime denotes differentiation with respect to variable x.
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Fig. 2. Notation of displacement parameters and stress resultants.
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