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a b s t r a c t

Lateral–torsional buckling is a critical mode of failure of metal structures. When the values of the

loadings on a member of a structure reach a limiting state, the member will experience out-of-plane

bending and twisting. This type of failure occurs suddenly in members with a much greater in-plane

bending stiffness than torsional or lateral bending stiffness. Slender members of a structural system

may buckle laterally and twist before their in-plane capabilities can be reached. Energy equations are

derived by considering the total potential energy of a beam-column element. The second variation of

the total potential energy equal to zero indicates the transition from a stable state to an unstable state,

which is the critical condition for buckling. Several energy equations are derived analytically by

calculating the second variation of the total potential energy of a double symmetric thin wall beam-

column element. In this article, in-plane deformations of the beam-column element are disregarded.

Then energy equations are derived expressing in dimensional and non-dimensional forms. These energy

equations will be implemented in a future article to derive elastic and geometric stiffness matrices for

the beam-column element and calculate the lateral–torsional buckling of plane structures. Examples are

provided to show the accuracy of the equations and applications.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In steel structures, all members in a frame are essentially
beam-columns. Beam-columns are typically loaded in the plane of
the weak axis so that bending occurs about the strong axis, such
as in the case of the commonly used wide flange sections. Primary
bending moments and in-plane deflections will be produced by
the end moments and transverse loadings of the beam-column,
while the axial force will produce secondary moments and
additional in-plane deflections.

When the values of the loadings on the beam-column reach a
limiting state, the member will experience out-of-plane bending
and twisting. This type of failure occurs suddenly in members
with a much greater in-plane bending stiffness than torsional or
lateral bending stiffness. The limit state of the applied loads of an
elastic slender beam of perfect geometry is called the elastic

lateral–torsional buckling load. In a beam-column or plane frame
structure, the buckling load may be referred to as the elastic

flexural–torsional buckling load.

The flexural–torsional buckling load of a member is influenced
by several factors including: (1) the cross section of the member,

(2) the unbraced length of the member, (3) the support
conditions, (4) the type and position of the applied loads, and
(5) the location of the applied loads with respect to the centroidal
axis of the cross section. The goal of a stability analysis is to
consider these factors to determine the flexural–torsional buck-
ling loads of a structure. If the flexural–torsional buckling loads of
a structure are known, it may be necessary to design the member
against flexural–torsional buckling by changing the member size
or adding some bracings.

The energy method can be used to analyze and calculate the
flexural–torsional buckling loads of simple structures such as a
beam-column element. However, this method will involve
excessive computations when applied to larger structures.
Computational methodology based on computer technology
may be needed in order to analyze more complicated flexur-
al–torsional buckling problems.

2. Research plan

In this work, the finite element method is applied in
conjunction with the energy equations to analyze flexural–tor-
sional buckling of plane structures and provide acceptable results
for buckling load calculations. There are several approaches to
derive stiffness matrices and element equations when applying
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finite element method. Although all of these methods provide the
same result, the stiffness matrices and element equations for
complex elements can be derived much easier when applying a
work or energy method.

In order to achieve the objective of this research in a logical
fashion, the project is divided to three phases: (1) derivation of the
energy equations for finite element applications; (2) derivation of
the element elastic and geometric stiffness matrices, transforma-
tion from local to global coordinates and assembly process to
obtain a generalized eigenvalue problem that must be solved to
provide flexural–torsional buckling load for beam-columns and
plane frames; and (3) software development using the finite
element method and object-oriented technology.

Phase 1 of the research consists of two parts: (a) derivation of
energy equations for lateral, flexural–torsional buckling load
of plane structures when in-plane deformations are disregarded,
(b) derivation of energy equations for elastic lateral, flexural–tor-
sional buckling load of plane structures when in-plane deforma-
tions are considered. Part (a) is the subject of this article.
Part (b) is presented in Torkamani and Roberts [1]. Phases 2
and 3 will be covered in future articles.

3. Variational methods

Energy equations are derived by considering the total potential
energy of a beam-column element. The total potential energy of a

structure, P, is the sum of the strain energy, U, and the potential
energy of the external loads, O, given by

P ¼ U þO (1)

Langhaar [2] and Brush et al. [3] showed the total potential
energy increment may be expressed in the form:

DP ¼ dPþ
1

2!
d2Pþ

1

3!
d3Pþ � � � (2)

where terms on the right-hand side are linear, quadratic, cubic,
etc., respectively, in the infinitesimally small variational displace-
ments. The theorem of stationary total potential energy states that
an equilibrium position is one of stationary total potential energy
which is expressed as

dP ¼ 0 (3)

The theorem of minimum total potential energy states that the
stationary value of P (for which dP ¼ 0) of an equilibrium
position is minimum when the position is stable. Therefore, the
equilibrium position is stable when

1
2d

2P40 (4)

Consequently, the equilibrium position is unstable when

1
2d

2Po0 (5)

The second variation of the total potential energy equal to zero
indicates the transition from a stable state to an unstable state,
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Nomenclature

A area of member
a distributed load height
ā non-dimensional distributed load height
E modulus of elasticity
e concentrated load height
ē non-dimensional concentrated load height
F axial load
F̄ non-dimensional axial load
G shear modulus
h depth of the member
Ix moment of inertia about the x axis
Iy moment of inertia about the y axis
Io warping moment of inertia
J torsional constant
K beam parameter
kz torsional curvature of the deformed element
L member length
Mx(z) bending moment
M1 moment at node 1
M2 moment at node 2
M̄1 non-dimensional moment at node 1
P concentrated load
P̄ non-dimensional concentrated load
q distributed load
q̄ non-dimensional distributed load
[TR] rotation transformation matrix
tp perpendicular distance to P from the mid-thickness

surface
U strain energy
Ue strain energy for each finite element
u out-of-plane lateral displacement
up out-of-plane lateral displacement of point Po

u1, u3 out-of-plane lateral displacements at nodes 1 and 2
u2, u4 out-of-plane rotation at nodes 1 and 2

u0 out-of-plane rotation
ū non-dimensional out-of-plane lateral displacement
V1 shear at node 1
V2 shear at node 2
V̄1 non-dimensional shear at node 1
v in-plane bending displacement
vM displacement through which the applied moment acts
vP displacement through which the concentrated load

acts
vp in-plane bending displacement of point Po

vq displacement through which the distributed load acts
v1, v3 in-plane displacements at nodes 1 and 2
v2, v4 in-plane rotation at nodes 1 and 2
v0 in-plane rotation
w axial displacement
wF longitudinal displacement through which the axial

load acts
wp longitudinal displacement of point Po

zP concentrated load location from left support
z̄ non-dimensional member distance
z̄p non-dimensional distance to concentrated load
ep longitudinal strain of point Po

{eu}, {ev} generalized strain vectors
f out-of-plane twisting rotation
f1, f3 out-of-plane twisting rotation at nodes 1 and 2
f2, f4 out-of-plane torsional curvature at nodes 1 and 2
f0 out-of-plane torsional curvature
gp shear strain of point Po

P total potential energy
P̄ non-dimensional total potential energy
sp longitudinal stress of point Po

tp shear stress of point Po

o warping function
O potential energy of the loads
y rotation of the member cross section
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