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In this paper a new method untitled “orthogonal meshless finite volume method” (OMFVM) is
developed for solving elastostatic problems in Euler-Bernoulli beam and thin plate. In this method,
the weak formulation of a conservation law is discretized by restricting it to a discrete set of test
functions. In contrast to the usual finite volume approach, the test functions are not taken as
characteristic functions of the control volumes in a spatial grid, but are chosen from a Heaviside step
function. The present approach eliminates the expensive process of directly differentiating the OMLS
interpolations in the entire domain. This method was evaluated by applying the formulation to a
variety of patch test and thin beam problems. The formulation successfully reproduced exact solutions.
Numerical examples demonstrate the advantages of the present methods: (i) lower-order polynomial
basis can be used in the OMLS interpolations; (ii) smaller support sizes can be used in the OMFVM

approach; and (iii) higher accuracies and computational efficiencies are obtained.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The orthogonal meshless finite volume method (OMFVM) is a
new meshless method for the discretization of governing differ-
ential equations. The motivation for developing this new method
is to unify advantages of meshless methods and finite volume
methods (FVM) in one scheme. The basic idea in the OMFVM is to
incorporate elements of the FVM into an orthogonal moving least-
square (OMLS) method [1,2].

Meshless methods are very flexible because they are free of
using mesh. The need for meshless methods typically arises if
problems with time dependent or very complicated geometries
are under consideration because the handling of mesh discretiza-
tion becomes technically complicated or very time consuming.
Fluid flows with structural interaction or fast moving boundaries
like an inflating air-bag are of that kind for instance.

Advantages of meshless methods are to overcome some of the
disadvantages of mesh-based methods such as discontinuous
secondary variables across inter-element boundaries and the
need for remeshing in large deformation problems [3-8]. Exten-
sive research on meshless methods, in particular, the meshless
local Petrov-Galerkin (MLPG) method recently exists in litera-
tures. There is analysis of thin beam problems using a Galerkin
implementation of the MLPG method [8-13]; a generalized
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moving least squares (GMLS) approximation is used to construct
the trial functions, and the test functions are chosen from the
same space. Refs. [9 and 10] showed good performance of the
MLPG method for potential and elasticity problems and a good
performance for beam problems. However, these methods need a
large number of calculations to compute the first and second
order derivatives of the moving least squares (MLS) trial functions
that are required in the weak form and special procedures were
needed to integrate the weak form accurately.

The purpose of this paper is to develop and use of the OMFVM
for thin beam and plate problems. The method is evaluated by
applying the formulation to patch test and mixed boundary value
problems and problems with complex loading conditions.

The outline of the paper is as follows. First, the OMLS inter-
polation scheme is described and then the FV form of the
governing differential equation is derived in a general sense,
and a system of algebraic equations is developed from this FV
form. Next, the OMLS method is used to discretize these formula-
tions and to obtain the OMFVM form of the governing differential
equation. Finally, the performance of the OMFVM is investigated
by implying to some patch test and examples.

2. Meshless interpolation

In general, meshless methods use a local interpolation, or an
approximation, to represent the trial function, using the values
(or the fictitious values) of the unknown variable at some
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randomly located nodes in the local vicinity. The moving least-
square method is generally considered to be one of the best
schemes to interpolate data with a reasonable accuracy. Basically
the MLS interpolation does not pass through the nodal data.
Consider a domain in question with control points for boundaries
(i.e. nodes on boundaries) and some scattered nodes inside, where
every node has its undetermined nodal coefficient (fictitious
nodal value) and an influence radius (radius for local weight
function). Now for the distribution of trial function at any point x
and its neighborhood Q, located in the problem domain @, u"(x)
may be defined by

uhx)=p'®ax) vxeQs 1)

The coefficient vector a(x) is determined by minimizing a
weighted discrete L, norm, which can be defined as
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where wy(x), is a weight function associated with the node I, with
wy(x) > 0 for all x in the support of w;(x), x; denotes the value of x
at node I, N is the number of nodes in Qs for which the weight
functions wy(x) > 0. Here it should be noted that i, I=1, 2, ... , N,
in Eq. (4), are the fictitious nodal values (undetermined nodal
coefficients), and not the exact nodal values of the unknown trial
function u"(x), in general.

Solving for a(x) by minimizing J in Eq. (2), and substituting it
into Eq. (1), give a relation which may be written in the form of an
interpolation function similar to that used in the FEM, as
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with the matrix A(x) and B(x) being defined by
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B(x) = [W1(0)p(x1),W2(X)P(X2),. . ., WNX)P(XN)]. (6)

The nodal shape function is complete up to the order of the
basis. The smoothness of the nodal shape function @'(x) is
determined by that of the basis and of the weight function. The
MLS approximation is well defined only when the matrix A in
Eq. (5) is non-singular. The shape function may be found as

u(X) =p" AT BXU =D (X)u  Vxe Qs (7)

If Eq. (6) has the properties of linearity, symmetry and
positive-definiteness it is a weighted inner product space. Using
orthogonality A(x) can be changed to a diagonal matrix which
means its inverse can be obtained without having singularity
problem. Therefore matrix A(x) can be a weighted orthogonal as
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In other word, matrix A(x) will be in the following form:
Ay 0O 0
A; 0
Ax)= 9
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it is clear A(x) is a diagonal matrix so its inverse can be obtained
as

1
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S 0
0 0 ;i

In order to obtain a weighted orthogonal A(x) the following
monomial basis p(x) can be considered

p1=1 (11a)
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=r— 11b
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where r= 37_ | x;.

The choice of the weight function is more or less arbitrary as
long as the weight function is positive and continuous. The
following weight function is considered in the present work:
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where d;= \xfx,\ is the distance from node x; to point x, h; is the
nodal distance, and p; is the scaling parameter for the size of the
sub-domain Q..

3. Local weak form and OMFVM for Euler-Bernoulli beam

Consider the governing equation of an Euler-Bernoulli
beam [14]

Elu" =f in global domain Q (13)
where u is transverse displacement, EI denotes the bending

stiffness, and f is distributed load over the beam. The boundary
conditions are given at the global boundary, I, as

ou(x)
[24

u(x)=u(x) on I'y, and =0(x) on I'y (14a)

M=M on I'yy, and V=V on Iy (14b)

where M and V denote the moment and the shear force, respec-
tively. I'y, I'y, I'y and I'y denote the boundary regions where
displacement, slope, moment, and shear force are specified,
respectively. The moment and shear force are related to the
displacement through the equations

M=Elu" and V = —ElW"” 15)

Different from the other meshless methods, such as the
element free Galerkin method, which are based on the global
weak formulation over the entire domain 2, a local weak form
over a local sub-domain ; located entirely inside the global
domain Q will be used in this study. It is noted that the local sub-
domain can be of an arbitrary shape containing a point x in
question. Even though a particular approximation of the local
weak form will give the same resulting discretized equations as
from the Galerkin approximation of global weak form, the local
weak form will provide the clear concept for a local non-element
integration, which does not need any background integration cell
over the entire domain. And, it will lead to a natural way to
construct the global stiffness matrix, not through the integration
over a global domain, but through the integration over a local
sub-domain.
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