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a b s t r a c t

A forced vibration analysis of laminated composite plates carrying a distributed patch mass is analyzed

and presented in this paper. It deals with the determination of the transverse, dynamic response of

rectangular composite plates subjected to a uniformly distributed P0eioext-type excitation. The

Hamilton’s Principle, using third-order shear deformation theory, is applied to simply supported

rectangular plates. The displacement of the plate is postulated by a double Fourier series. The effects of

size and location of the area of the patch, frequency ratio and mass ratio on the response of the plate are

also presented. A thorough comparison with well-known published results is presented for the case of

free vibration of unloaded plates and good agreement is observed.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration problems of plates are very common in engineering
applications. Rectangular plates have wide applications in civil
and mechanical engineering. Plates form an essential part of many
aerospace, marine and automobile structures. These structural
components, in many instances, are subjected to vibration. Quite
frequently naval and ocean structural designers confront the
problem of a plate or slab which supports a motor or an engine
which excites, dynamically, the structural element. Very often
the excitation is treated as a concentrated force but, obviously, it
acts over a finite area, and for a better analysis, the mass of the
motor or engine should be considered.

Laminated composite plates are widely used in industry and
new fields of technology. Due to high degrees of anisotropy and
low rigidity in transverse shear, Kirchhoff’s hypothesis as a
classical theory is no longer adequate. The hypothesis states that
transverse normal to the mid-plane of a plate remains straight
and normal after deformation because of the negligible transverse
shear effects. Refined theories based on removing those restric-
tions of transverse normal have been recently used. As a result,
the free vibration frequencies calculated by using the classical
thin plate theory are higher than those obtained by Mindlin plate
theory [1], in which transverse shear and rotary inertia effects are
included.

A number of shear deformable theories have been proposed to
date. The first such theory for laminated isotropic plates is
apparently due to Stavsky [2]. The theory has been generalized to
laminated anisotropic plates by Yang, Norris and Stavsky [3]. It has
been shown (Sun and Whitney [4] and Bert [5] and Srinivas and
Rao [6] and Serinivas et al. [7]) that the Yang–Norris–Stavsky
(YNS) theory is adequate for predicting the flexural vibration
response of laminated anisotropic plates in the first few modes.
Whitney and Pagano [8] employed the YNS theory to study the
cylindrical bending of antisymmetric cross-ply and angle-ply
plate strips under sinusoidal loading and the free vibration of
antisymmetric angle-ply plate strips (see also Fortier and
Rossettos [9] and Sinha and Rath [10]). Bert and Chen [11]
presented, using the YNS theory, a closed-form solution for the
free vibration of simply supported rectangular plates of antisym-
metric angle-ply laminates. Noor [12] also presented exact three-
dimensional elasticity solutions for the free vibration of isotropic,
orthotropic and anisotropic composite laminated plates which
serves as benchmark solutions for comparison by many research-
ers. Free vibration of antisymmetric angle-ply laminated plates
including transverse shear deformation by the finite element
method was presented by Reddy [13]. Reddy [14] also derived a
set of variationally consistent equilibrium equations for the
kinematic models originally proposed by Reddy [14]. Reddy and
Khedier [15] presented analytical and finite element solutions for
vibration and buckling of laminated composite plates using
various plate theories to prove necessity of shear deformation
theories to predict the behavior of composite laminates. Shankara
and Iyengar [16] also presented, using higher-order shear
deformation theory, finite element solutions for free vibration
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analysis of laminated composite plates. Khedier and Reddy [17]
obtained a complete set of linear equations of the second-order
theory to analyze the free vibration behavior of cross-ply and
antisymmetric angle-ply laminated plates. Singh et al. [18]
presented natural frequencies of composite plates with random
material properties using higher-order shear deformation theory
(including rotatory inertia effect), and Kant and Swaminathan [19]
presented analytical solutions for free vibration of laminated
composite and sandwich plates based on higher-order refined
theory. Rastgaar et al. [20] also presented natural frequencies of
laminated composite plates using third-order shear deformation
theory (TSDT).

While there are several reports on plate vibrations with and
without added point masses, very few reports on plate vibrations
with distributed mass loading can be found in the literature
(Wong [23] and Kompaz and Telli [24]). Finally, though there are
some papers on forced vibration of rectangular plates under
harmonic loadings [25–27], a brief survey of the literature shows
that forced vibration of laminated plates with distributed patch
mass and excitation has not been presented.

In this paper, the forced vibration of a simply supported
laminated composite plate with distributed patch mass is
emphasized. It deals with the determination of the transverse,
dynamic response of a rectangular composite plate subjected to a
uniformly distributed P0eioext-type excitation and the force acts
over a rectangular portion of the plate. The problem is solved
using the Hamilton’s Principle by means of a double Fourier
series. We present a third-order shear deformation theory, which
is based on the same assumptions as the classical (CLPT) and the
first-order shear deformation plate theories (FSDT), except that
the assumption on the straightness and normality of the
transverse normal is relaxed. Theories higher than third order
are not used because the accuracy gained is so little that the effort
required to solve the equations is not justified. Unlike the first
order shear deformation theory, the higher order theory does not
require shear correction factors. Both angle-ply and cross-ply
laminates have been considered in this paper. A thorough
comparison with well known published results is presented for
the case of free vibration of unloaded plates and good agreement
is observed.

2. Basic formulation

Consider a rectangular laminated composite plate of length a,
width b and thickness h (Fig. 1). The TSDT is based on the
following assumed displacement field [21]:
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u, v and w are the displacement components in the x-, y- and
z-directions, respectively, u0, v0 and w0 are the in plane
displacements of the middle plane. jx and jy are the
rotations of a transverse normal about the y and x axes,
respectively. The strain-displacement equations of linear elasticity
are [21]
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The constitutive relations for any layer in the (x,y) system are
given by [21]
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Q0 ij are the plane-stress reduced stiffness components
of the layer material. The stress resultants per unit length
are [21]
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In Eq. (4) a and b take the symbols x and y. The stress resultants
are related to the strains by the relations [21]
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Fig. 1. Plate with distributed patch load.
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